ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex-band structure: a method to determine the off-resonant electron transport in oligomers

99   0   0.0 ( 0 )
 نشر من قبل Giorgos Fagas
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We validate that off-resonant electron transport across {it ultra-short} oligomer molecular junctions is characterised by a conductance which decays exponentially with length, and we discuss a method to determine the damping factor via the energy spectrum of a periodic structure as a function of complex wavevector. An exact mapping to the complex wavevector is demonstrated by first-principle-based calculations of: a) the conductance of molecular junctions of phenyl-ethynylene wires covalently bonded to graphitic ribbons as a function of the bridge length, and b) the complex-band structure of poly-phenyl-ethynylene.



قيم البحث

اقرأ أيضاً

We study using the Bethe-Salpeter formalism the excitation energies of the zincbacteriochlorinbacteriochlorin dyad, a paradigmatic photosynthetic complex. In great contrast with standard timedependent density functional theory calculations with (semi )local kernels, charge transfer excitations are correctly located above the intramolecular Q-bands transitions found to be in excellent agreement with experiment. Further, the asymptotic Coulomb behavior towards the true quasiparticle gap for charge transfer excitations at long distance is correctly reproduced, showing that the present scheme allows to study with the same accuracy intramolecular and charge transfer excitations at various spatial range and screening environment without any adjustable parameter.
We present a theoretical study of the the effects of off-resonant polarized optical fields on a ferromagnetic model system. We determine the light-induced dynamics of itinerant carriers in a system that includes magnetism at the mean-field level and spin-orbit coupling. We investigate an all-optical switching process for ferromagnets, which is close to the one proposed by Qaiumzadeh et al. [Phys. Rev. B 88, 064416] for the inverse Faraday effect. By computing the optically driven coherent dynamics together with incoherent scattering mechanisms we go beyond a perturbation expansion in powers of the optical field. We find an important contribution of a dynamic Stark effect coupling of the Raman type between the magnetic bands, which leads to a polarization-dependent effect on the magnetization that may support or oppose switching, but also contributes to demagnetization via an increase in electronic energy.
The electronic structure of carbon shells of carbon encapsulated iron nanoparticles carbon encapsulated Fe@C has been studied by X-ray resonant emission and X-ray absorption spectroscopy. The recorded spectra have been compared to the density functio nal calculations of the electronic structure of graphene. It has been shown that an Fe@C carbon shell can be represented in the form of several graphene layers with Stone-Wales defects. The dispersion of energy bands of Fe@C has been examined using the measured C Ka resonant X-ray emission spectra.
413 - Gang Qiu , Yixiu Wang , Yifan Nie 2018
Quantum Hall effect (QHE) is a macroscopic manifestation of quantized states which only occurs in confined two-dimensional electron gas (2DEG) systems. Experimentally, QHE is hosted in high mobility 2DEG with large external magnetic field at low temp erature. Two-dimensional van der Waals materials, such as graphene and black phosphorus, are considered interesting material systems to study quantum transport, because it could unveil unique host material properties due to its easy accessibility of monolayer or few-layer thin films at 2D quantum limit. Here for the first time, we report direct observation of QHE in a novel low-dimensional material system: tellurene.High-quality 2D tellurene thin films were acquired from recently reported hydrothermal method with high hole mobility of nearly 3,000 cm2/Vs at low temperatures, which allows the observation of well-developed Shubnikov-de-Haas (SdH) oscillations and QHE. A four-fold degeneracy of Landau levels in SdH oscillations and QHE was revealed. Quantum oscillations were investigated under different gate biases, tilted magnetic fields and various temperatures, and the results manifest the inherent information of the electronic structure of Te. Anomalies in both temperature-dependent oscillation amplitudes and transport characteristics were observed which are ascribed to the interplay between Zeeman effect and spin-orbit coupling as depicted by the density functional theory (DFT) calculations.
The electronic band structure of complex nanostructured semiconductors has a considerable effect on the final electronic and optical properties of the material and, ultimately, on the functionality of the devices incorporating them. Valence electron energy-loss spectroscopy (VEELS) in the transmission electron microscope (TEM) provides the possibility of measuring this property of semiconductors with high spatial resolution. However, it still represents a challenge for narrow-bandgap semiconductors, since an electron beam with low energy spread is required. Here we demonstrate that by means of monochromated VEELS we can study the electronic band structure of narrow-gap materials GaSb and InAs in the form of heterostructured nanowires, with bandgap values down to 0.5 eV, especially important for newly developed structures with unknown bandgaps. Using complex heterostructured InAs-GaSb nanowires, we determine a bandgap value of 0.54 eV for wurtzite InAs. Moreover, we directly compare the bandgaps of wurtzite and zinc-blende polytypes of GaSb in a single nanostructure, measured here as 0.84 and 0.75 eV, respectively. This allows us to solve an existing controversy in the band alignment between these structures arising from theoretical predictions. The findings demonstrate the potential of monochromated VEELS to provide a better understanding of the band alignment at the heterointerfaces of narrow-bandgap complex nanostructured materials with high spatial resolution. This is especially important for semiconductor device applications where even the slightest variations of the electronic band structure at the nanoscale can play a crucial role in their functionality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا