ﻻ يوجد ملخص باللغة العربية
We derive the exact density profile of a harmonically trapped Bose-Einstein condensate (BEC) which has dipole-dipole interactions as well as the usual s-wave contact interaction, in the Thomas-Fermi limit. Remarkably, despite the non-local anisotropic nature of the dipolar interaction, the density turns out to be an inverted parabola, just as in the pure s-wave case, but with a modified aspect ratio. The ``scaling solution approach of Kagan, Surkov, and Shlyapnikov [Phys. Rev. A 54, 1753 (1996)] and Castin and Dum [Phys. Rev. Lett. 77}, 5315 (1996)] for a BEC in a time-dependent trap can therefore be applied to a dipolar BEC, and we use it to obtain the exact monopole and quadrupole shape oscillation frequencies.
We consider the quasi-particle excitations of a trapped dipolar Bose-Einstein condensate. By mapping these excitations onto radial and angular momentum we show that the roton modes are clearly revealed as discrete fingers in parameter space, whereas
The ground state of a Bose-Einstein condensate in a two-dimensional trap potential is analyzed numerically at the infinite-particle limit. It is shown that the anisotropy of the many-particle position variance along the $x$ and $y$ axes can be opposi
Our recent measurements on the expansion of a chromium dipolar condensate after release from an optical trapping potential are in good agreement with an exact solution of the hydrodynamic equations for dipolar Bose gases. We report here the theoretic
We have measured the effect of dipole-dipole interactions on the frequency of a collective mode of a Bose-Einstein condensate. At relatively large numbers of atoms, the experimental measurements are in good agreement with zero temperature theoretical
We derive an exact solution to the Thomas-Fermi equation for a Bose-Einstein condensate which has dipole-dipole interactions as well as the usual s-wave contact interaction, in a harmonic trap. Remarkably, despite the non-local anisotropic nature of