ﻻ يوجد ملخص باللغة العربية
Extensive experimental and numerical studies of the non-equilibrium dynamics of spin glasses subjected to temperature or bond perturbations have been performed to investigate chaos and memory effects in selected spin glass systems. Temperature shift and cycling experiments were performed on the strongly anisotropic Ising-like system {ising} and the weakly anisotropic Heisenberg-like system {AgMn}, while bond shift and cycling simulations were carried out on a 4 dimensional Ising Edwards-Anderson spin glass. These spin glass systems display qualitatively the same characteristic features and the observed memory phenomena are found to be consistent with predictions from the ghost domain scenario of the droplet scaling model.
A range of ferroic glasses, magnetic, polar, relaxor and strain glasses, are considered together from the perspective of spin glasses. Simple mathematical modelling is shown to provide a possible conceptual unification to back similarities of experim
It is argued that the main characteristic features of displacive relaxor ferrolectrics of the form ${rm{A(B,B)}rm{O}}_3$ with isovalent ${rm{B,B}}$ can be explained and understood in terms of a soft-pseudospin analogue of conventional spin glasses as
As well as several different kinds of periodically ordered ferroic phases, there are now recognized several different examples of ferroic glassiness, although not always described as such and in material fields of study that have mostly been develope
Spin-charge conversion via inverse spin Hall effect (ISHE) is essential for enabling various applications of spintronics. The spin Hall response usually follows a universal scaling relation with longitudinal electric resistivity and has mild temperat
Due to high viscosity, glassy systems evolve slowly to the ordered state. Results of molecular dynamics simulation reveal that the structural ordering in glasses becomes observable over experimental (finite) time-scale for the range of phase diagram