We study pumping of charge in a 2DEG in the quantum Hall regime at filling factor $ u = 2$ (2 spin-split levels of the lowest Landau level). For pumping frequencies that match the Zeeman energy splitting, quantum pumping together with hyperfine interaction between electrons and nuclei induces transitions between the spin-split levels. These lead to a step-like change in the pumped current and to polarization of the nuclei. We present quantitative predictions for both. Our model provides the first quantitative tool to both control and measure the amount of local nuclear polarization in a 2DEG.