We present a study of the Andreev reflections in superconductor/ferromagnet nanostructured point contacts. The experimental data are analyzed in the frame of a model with two spin-dependent transmission coefficients for the majority and minority charge carriers in the ferromagnet. This model consistently describes the whole set of conductance measurements as a function of voltage, temperature, and magnetic field. The ensemble of our results shows that the degree of spin polarization of the current can be unambiguously determined using Andreev physics.