ﻻ يوجد ملخص باللغة العربية
We introduce an algorithm for treating growth on surfaces which combines important features of continuum methods (such as the level-set method) and Kinetic Monte Carlo (KMC) simulations. We treat the motion of adatoms in continuum theory, but attach them to islands one atom at a time. The technique is borrowed from the Dielectric Breakdown Model. Our method allows us to give a realistic account of fluctuations in island shape, which is lacking in deterministic continuum treatments and which is an important physical effect. Our method should be most important for problems close to equilibrium where KMC becomes impractically slow.
We discuss the detailed balance condition for hybrid Monte Carlo method
We present a new efficient method for Monte Carlo simulations of diffusion-reaction processes. First introduced by us in [Phys. Rev. Lett., 97:230602, 2006], the new algorithm skips the traditional small diffusion hops and propagates the diffusing pa
Controlled anisotropic growth of two-dimensional materials provides an approach for the synthesis of large single crystals and nanoribbons, which are promising for applications as low-dimensional semiconductors and in next-generation optoelectronic d
While the self-learning kinetic Monte Carlo (SLKMC) method enables the calculation of transition rates from a realistic potential, implementations of it were usually limited to one specific surface orientation. An example is the fcc (111) surface in
We have studied the island size distribution and spatial correlation function of an island growth model under the effect of an elastic interaction of the form $1/r^{3}$. The mass distribution $P_n(t)$ that was obtained presents a pronounced peak that