ﻻ يوجد ملخص باللغة العربية
Exact results of the finite-size behavior of the susceptibility in three-dimensional mean spherical model films under Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions are presented. The corresponding scaling functions are explicitly derived and their asymptotics close to, above and below the bulk critical temperature $T_c$ are obtained. The results can be incorporated in the framework of the finite-size scaling theory where the exponent $lambda$ characterizing the shift of the finite-size critical temperature with respect to $T_c$ is smaller than $1/ u$, with $ u$ being the critical exponent of the bulk correlation length.
We present a unified view of finite-size scaling (FSS) in dimension d above the upper critical dimension, for both free and periodic boundary conditions. We find that the modified FSS proposed some time ago to allow for violation of hyperscaling due
We develop a scaling theory for the finite-size critical behavior of the microcanonical entropy (density of states) of a system with a critically-divergent heat capacity. The link between the microcanonical entropy and the canonical energy distributi
We study critical point finite-size effects in the case of the susceptibility of a film in which interactions are characterized by a van der Waals-type power law tail. The geometry is appropriate to a slab-like system with two bounding surfaces. Boun
We study the phase diagram and critical properties of quantum Ising chains with long-range ferromagnetic interactions decaying in a power-law fashion with exponent $alpha$, in regimes of direct interest for current trapped ion experiments. Using larg
We study critical point finite-size effects on the behavior of susceptibility of a film placed in the Earths gravitational field. The fluid-fluid and substrate-fluid interactions are characterized by van der Waals-type power law tails, and the bounda