ﻻ يوجد ملخص باللغة العربية
Recently experiments on high critical temperature superconductors has shown that the doping levels and the superconducting gap are usually not uniform properties but strongly dependent on their positions inside a given sample. Local superconducting regions develop at the pseudogap temperature ($T^*$) and upon cooling, grow continuously. As one of the consequences a large diamagnetic signal above the critical temperature ($T_c$) has been measured by different groups. Here we apply a critical-state model for the magnetic response to the local superconducting domains between $T^*$ and $T_c$ and show that the resulting diamagnetic signal is in agreement with the experimental results.
We propose a model and derive analytical expressions for conductivity in heterogeneous fully anisotropic conductors with ellipsoid superconducting inclusions. This model and calculations are useful to analyze the observed temperature dependence of co
We express the superconducting gap, $Delta(T)$, in terms of thermodynamic functions in both $s$- and d-wave symmetries. Applying to Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ and Y$_{0.8}$Ca$_{0.2}$Ba$_2$Cu$_3$O$_{7-delta}$ we find that for all dopings $Delta
Using the large-$N$ limit of the $t$-$J$ model and allowing also for phonons and the electron-phonon interaction we study the isotope effect $alpha$ for coupling constants appropriate for YBCO. We find that $alpha$ has a minimum at optimal doping and
The Meissner effect and the associated perfect bulk diamagnetism together with zero resistance and gap opening are characteristic features of the superconducting state. In the pseudogap state of cuprates unusual diamagnetic signals as well as anomalo
We study the electronic structures of two single layer superconducting cuprates, Tl$_2$Ba$_2$CuO$_{6+delta}$ (Tl2201) and (Bi$_{1.35}$Pb$_{0.85}$)(Sr$_{1.47}$La$_{0.38}$)CuO$_{6+delta}$ (Bi2201) which have very different maximum critical temperatures