ﻻ يوجد ملخص باللغة العربية
The ab-initio many-body method suggested in the preceding paper is applied to the 3d transition metals Fe, Co, Ni, and Cu. We use a linearized muffin-tin orbital calculation to determine Bloch functions for the Hartree one-particle Hamiltonian, and from these obtain maximally localized Wannier functions. Within this Wannier basis all relevant one-particle and two-particle Coulomb matrix elements are calculated. The resulting second-quantized many-body Hamiltonian with ab-initio parameters is studied within the simplest many-body approximation, namely the unscreened, selfconsistent, Hartree-Fock approximation (HFA). We present these HFA results, which we believe are the first to have been done for crystalline 3d transition metals, and compare them with those obtained from the standard local (spin) density approximation (LSDA) within density functional theory (DFT). Although the d-bands sit considerably lower within HFA than within L(S)DA, the exchange splitting and magnetic moments for ferromagnetic Fe, Co, and Ni are only slightly larger in HFA than what is obtained experimentally or within LSDA. The HFA total energies are lower than the corresponding L(S)DA calculations.
We propose a new, alternative method for ab-initio calculations of the electronic structure of solids, which has been specifically adapted to treat many-body effects in a more rigorous way than many existing ab-initio methods. We start from a standar
Starting from realistic nuclear forces, the chiral N$^3$LO and JISP16, we have applied many-body perturbation theory (MBPT) to the structure of closed-shell nuclei, $^4$He and $^{16}$O. The two-body N$^3$LO interaction is softened by a similarity ren
Magnetism at the nanoscale has been a very active research area in the past decades, because of its novel fundamental physics and exciting potential applications. We have recently performed an {it ab intio} study of the structural, electronic and mag
We present ab-initio calculations of the excited state properties of liquid water in the framework of Many-Body Greens function formalism. Snapshots taken from molecular dynamics simulations are used as input geometries to calculate electronic and op
We present an ab initio $GW$ self-energy calculation of the electronic structure of LaNiO$_2$. With respect to density-functional theory we find that in $GW$ the La 4$f$ states undergo an important $+$2 eV upward shift from the Fermi level, while the