ﻻ يوجد ملخص باللغة العربية
A new method for direct evaluation of both crystalline structure, bulk modulus B_0, and bulk-modulus pressure derivative B_0 of solid materials with complex crystal structures is presented. The explicit and exact results presented here permit a multidimensional polynomial fit of the total energy as a function of all relevant structure parameters to simultaneously determine the equilibrium configuration and the elastic properties. The method allows for inclusion of general (internal) structure parameters, e.g., bond lengths and angles within the unit cell, on an equal footing with the unit-cell lattice parameters. The method is illustrated by the calculation of B_0 and B_0 for a few selected materials with multiple structure parameters for which data is obtained by using first-principles density functional theory.
Plutonium metal exhibits an anomalously large softening of its bulk modulus at elevated temperatures that is made all the more extraordinary by the finding that it occurs irrespective of whether the thermal expansion coefficient is positive, negative
We describe the ground- and excited-state electronic structure of bulk MnO and NiO, two prototypical correlated electron materials, using coupled cluster theory with single and double excitations (CCSD). As a corollary, this work also reports the fir
The thermodynamic properties of Bi-Sn were studied at 600 and 900K using a quasi-lattice theory. After successful fitting of Gibbs free energies of mixing and thermodynamic activities, the fitting parameters were used to investigate the enthalpy of m
Equilibrium polyethylene crystal structure, cohesive energy, and elastic constants are calculated by density-functional theory applied with a recently proposed density functional (vdW-DF) for general geometries [Phys. Rev. Lett. 92, 246401 (2004)] an
We present a study of elastic metamaterial that possesses multiple local resonances. We demonstrated that the elastic metamaterial can have simultaneously three negative effective parameters, i.e., negative effective mass, effective bulk modulus and