ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram of the $CuO_{3}$ chains in $YBa_{2}Cu_{3}O_{6+X}$ and $PrBa_{2}Cu_{3}O_{6+X}$

116   0   0.0 ( 0 )
 نشر من قبل Roberto Franco Penaloza
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a mapping of the multiband Hubbard model for $CuO_{3}$ chains in $RBa_{2}Cu_{3}0_{6+x}$ (R=Y or a rare earth) onto a $t-J$ model and the description of the charge dynamics of the latter in terms pf s spinless model, to study the electronic structure of the chains. We briefly review results for the optical conductivity and we calculate the quantum phase diagram of quarter filled chains including Coulomb repulsion up to that between next-nearest-neighbor $Cu$ atoms $V_{2}$, using the resulting effective Hamiltonian, mapped onto an XXZ chain, and the method of crossing of excitation spectra. The method gives accurate results for the boundaries of the metallic phase in this case. The inclusion of $V_{2}$ greatly enhances the region of metallic behavior of the chains.



قيم البحث

اقرأ أيضاً

101 - R. Beck , Y. Dagan , A. Milner 2002
hether the node in the order parameter characteristic of a $d-wave$ superconductor can or cannot be removed by an applied magnetic field has been a subject of debate in recent years. Thermal conductivity results on the high Tc superconductor $Bi_{2}S r_{2}CaCu_{2}O_{8}$ originally explained by Laughlin in terms of such a node removal were complicated by hysteresis effects, and judged inconclusive. We present new tunneling data on $YBa_{2}Cu_{3}O_{7-x}$ that support the existence of the node removal effect, under specific orientations of the samples surfaces and magnetic field. We also explain the hysteretic behavior and other previous tunneling results so far not understood satisfactorily, attributing them to a combination of node removal and Doppler shift of low energy surface bound states.
The scope of this article is to report very detailed results of the measurements of magnetic relaxation phenomena in the new Cu$_{0.5}$Fe$_{2.5}$O$_{4}$ nanoparticles and known CuFe$_{2}$O$_{4}$ nanoparticles. The size of synthesized particles is (6. 5$pm $1.5)nm. Both samples show the superparamagnetic behaviour, with the well-defined phenomena of blocking of magnetic moment. This includes the splitting of zero-field-cooled and field-cooled magnetic moment curves, dynamical hysteresis, slow quasi-logarithmic relaxation of magnetic moment below blocking temperature. The scaling of the magnetic moment relaxation data at different temperatures confirms the applicability of the simple thermal relaxation model. The two copper-ferrites with similar structures show significantly different magnetic anisotropy density and other magnetic properties. Investigated systems exhibit the consistency of all obtained results.
We present the result of our accurate measurements of the a- and b-axis resistivity (rho_a and rho_b), magnetoconductivity (Deltasigma / sigma), Hall coefficient R_H, and the a-axis thermopower S_a in untwinned YBa_{2}Cu_{3}O_{y} single crystals in a wide range of doping (6.45 < y < 7.0). The systematics of our data reveals a number of novel 60-K-phase anomalies in the charge transport: (i) Temperature dependences of rho_a show anomalous overlap below ~130 K for 6.65 < y < 6.80, (ii) Hall mobility mu_H shows an enhancement near y ~ 6.65, which is reflected in an anomalous y dependence of sigma_{xy}, (iii) With decreasing temperature R_H shows a marked drop upon approaching T_c only in samples with 6.70 < y < 6.85, (iv) Superconducting fluctuation magnetoconductivity is anomalously enhanced near y ~ 6.7, and (v) H_{c2} is anomalously reduced near y ~ 6.70. We discuss that the fluctuating charge stripes might be responsible for these anomalies in the charge transport.
118 - T. Stein , G. A. Levin , 1999
We report transport and magnetic relaxation measurements in the mixed state of strongly underdoped Y_{1-x}Pr_{x}Ba_{2}Cu_{3}O_{7} crystals. A transition from thermally activated flux creep to temperature independent quantum flux creep is observed in both transport and magnetic relaxation at temperatures T * 5 K. Flux transformer measurements indicate that the crossover to quantum creep is preceded by a coupling transition. Based on these observations we argue that below the coupling transition the current is confined within a very narrow layer beneath the current contacts.
Magnetoresistance (MR) in the a-axis resistivity of untwinned YBa_{2}Cu_{3}O_{y} single crystals is measured for a wide range of doping (y = 6.45 - 7.0). The y-dependence of the in-plane coherence length xi_{ab} estimated from the fluctuation magneto conductance indicates that the superconductivity is anomalously weakened in the 60-K phase; this gives evidence, together with the Hall coefficient and the a-axis thermopower data that suggest the hole doping to be 12% for y = 6.65, that the origin of the 60-K plateau is the 1/8 anomaly. At high temperatures, the normal-state MR data show signatures of the Zeeman effect on the pseudogap in underdoped samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا