The dynamics of homogeneous nucleation and growth of crystalline nickel from the super-cooled melt is examined during rapid quenching using molecular dynamics and a modified embedded atom method potential. The character of the critical nuclei of the crystallization transition is examined using common neighbor analysis and visualization. At nucleation the saddle point droplet consists of randomly stacked planar structures with an in plane triangular order. These results are consistent with previous theoretical results that predict that the nucleation process in some metals is non-classical due to the presence of long-range forces and a spinodal.