ﻻ يوجد ملخص باللغة العربية
Atomic Force Microscopy (AFM) is a suitable tool to perform tribological characterization of materials down to the nanometer scale. An important aspect in nanofriction measurements of corrugated samples is the local tilt of the surface, which affects the lateral force maps acquired with the AFM. This is one of the most important problems of state-of-the-art nanotribology, making difficult a reliable and quantitative characterization of real corrugated surfaces. A correction of topographic spurious contributions to lateral force maps is thus needed for corrugated samples. In this paper we present a general approach to the topographic correction of AFM lateral force maps and we apply it in the case of multi-asperity adhesive contact. We describe a complete protocol for the quantitative characterization of the frictional properties of corrugated systems in the presence of surface adhesion using the AFM.
We present the result of a systematic study of the tribological properties of industrial Polytetrafluorethylene (PTFE)-based coatings carried out with an atomic force microscope. A new characterization protocol allowed the reliable and quantitative a
The analysis of the electronic surface properties of transition metal oxides being key materials for future nanoelectronics requires a direct characterization of the conductivity with highest spatial resolution. Using local conductivity atomic force
We derive the lateral Casimir-Polder force on a ground state atom on top of a corrugated surface, up to first order in the corrugation amplitude. Our calculation is based on the scattering approach, which takes into account nonspecular reflections an
By employing single charge injections with an atomic force microscope, we investigated redox reactions of a molecule on a multilayer insulating film. First, we charged the molecule positively by attaching a single hole. Then we neutralized it by atta
Magnetic force microscopy (MFM) measurements generally provide phase images which represent the signature of domain structures on the surface of nanomaterials. To quantitatively determine magnetic stray fields based on an MFM image requires calibrate