ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity and Field-Induced Magnetism in Pr$_{2-x}$Ce$_x$CuO$_4$ Single Crystals

206   0   0.0 ( 0 )
 نشر من قبل Jeff Sonier
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report muon-spin rotation/relaxation (muSR) measurements on single crystals of the electron-doped high-T_c superconductor Pr$_{2-x}$Ce$_x$CuO$_4$. In zero external magnetic field, superconductivity is found to coexist with Cu spins that are static on the muSR time scale. In an applied field, we observe a Knight shift that is primarily due to the magnetic moment induced on the Pr ions. Below the superconducting transition temperature T_c, an additional source of static magnetic order appears throughout the sample. This finding is consistent with antiferromagnetic ordering of the Cu spins in the presence of vortices. We also find that the temperature dependence of the in-plane magnetic penetration depth in the vortex state resembles that of the hole-doped cuprates at temperatures above ~ 0.2 T_c.



قيم البحث

اقرأ أيضاً

199 - D. Nicoletti , D. Fu , O. Mehio 2018
Optical excitation of stripe-ordered La$_{2-x}$Ba$_x$CuO$_4$ has been shown to transiently enhance superconducting tunneling between the CuO$_2$ planes. This effect was revealed by a blue-shift, or by the appearance of a Josephson Plasma Resonance in the terahertz-frequency optical properties. Here, we show that this photo-induced state can be strengthened by the application of high external magnetic fields oriented along the c-axis. For a 7-Tesla field, we observe up to a ten-fold enhancement in the transient interlayer phase correlation length, accompanied by a two-fold increase in the relaxation time of the photo-induced state. These observations are highly surprising, since static magnetic fields suppress interlayer Josephson tunneling and stabilize stripe order at equilibrium. We interpret our data as an indication that optically-enhanced interlayer coupling in La$_{2-x}$Ba$_x$CuO$_4$ does not originate from a simple optical melting of stripes, as previously hypothesized. Rather, we speculate that the photo-induced state may emerge from activated tunneling between optically-excited stripes in adjacent planes.
We analyze optical spectroscopy data of the electron-doped superconductor (Pr$_{2-x}$Ce$_x$)CuO$_4$ (PCCO) to investigate the coupling of the charge carriers to bosonic modes. The method of analysis is the inversion of the optical scattering rate $ta u^{-1}_{rm op}(omega,T)$ at different temperatures $T$ by means of maximum entropy technique combined with Eliashberg theory. We find that in the superconducting state the charge carriers couple to two dominant modes one at $sim 10 $meV and a second one at $sim 45 $meV. The low energy mode shows a strong temperature dependence and disappears at or slightly above the critical temperature $T_c$. The high energy mode exists above $T_c$ and moves towards higher energies with increasing temperatures. It also becomes less prominent at temperatures $> 100 $K above which it evolves into a typical spin-fluctuation background. In contrast to the hole-doped High-$T_c$ superconductors PCCO proves to be a superconductor close to the dirty limit.
104 - X. Y. Tee , T. Ito , T. Ushiyama 2016
We use spatially-resolved transport techniques to investigate the superconducting properties of single crystals La$_{2-x}$Ba$_x$CuO$_4$. We find a new superconducting transition temperature $T_{cs}$ associated with the ab-plane surface region which i s considerably higher than the bulk $T_c$. The effect is pronounced in the region of charge carrier doping $x$ with strong spin-charge stripe correlations, reaching $T_{cs}=36$ K or 1.64$T_c$.
We report a Cu K- and L$_3$-edge resonant inelastic x-ray scattering study of charge and spin excitations of bulk Nd$_{2-x}$Ce$_x$CuO$_4$, with focus on post-growth annealing effects. For the parent compound Nd$_2$CuO$_4$ ($x = 0$), a clear charge-tr ansfer gap is observed in the as-grown state, whereas the charge excitation spectra indicate that electrons are doped in the annealed state. This is consistent with the observation that annealed thin-film and polycrystalline samples of RE$_2$CuO$_4$ (RE = rare earth) can become metallic and superconducting at sufficiently high electron concentrations without Ce doping. For $x = 0.16$, a Ce concentration for which it is known that oxygen reduction destroys long-range antiferromagnetic order and induces superconductivity, we find that the high-energy spin excitations of non-superconducting as-grown and superconducting annealed crystals are nearly identical. This finding is in stark contrast to the significant changes in the low-energy spin excitations previously observed via neutron scattering.
The Pr-rich end of the alloy series Pr$_{1-x}$Nd$_x$Os$_4$Sb$_{12}$ has been studied using muon spin rotation and relaxation. The end compound PrOs$_4$Sb$_{12}$ is an unconventional heavy-fermion superconductor, which exhibits a spontaneous magnetic field in the superconducting phase associated with broken time-reversal symmetry. No spontaneous field is observed in the Nd-doped alloys for x $>$ 0.05. The superfluid density is insensitive to Nd concentration, and no Nd$^{3+}$ static magnetism is found down to the lowest temperatures of measurement. Together with the slow suppression of the superconducting transition temperature with Nd doping, these results suggest anomalously weak coupling between Nd spins and conduction-band states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا