ﻻ يوجد ملخص باللغة العربية
We report a study of the organic compound $(TMTSF)_2 ClO_4$ in both a sample cooled very slowly through the anion ordering temperature (relaxed state) and a sample cooled more rapidly (intermediate state). For the relaxed state the entire sample is observed to be superconducting below about T_c ~ 1.2 K. The second moment of the internal field distribution was measured for the relaxed state yielding an in-plane penetration depth of ~ 12000 Angstroms. The intermediate state sample entered a mixed phase state, characterized by coexisting macroscopic sized regions of superconducting and spin density wave (SDW) regions, below T_c ~ 0.87 K. These data were analyzed using a back-to-back cutoff exponential function, allowing the extraction of the first three moments of the magnetic field distribution. Formation of a vortex lattice is observed below 0.87 K as evidenced by the diamagnetic shift for the two fields in which we took intermediate state data.
The study of the anion ordered (TMTSF)_2ClO_4_(1-x)ReO_4_x, solid solution in the limit of a low ReO_4- substitution level (0<=x<=17%) has revealed a new and interesting phase diagram. Superconductivity is drastically suppressed as the effect of ReO_
We report transverse-field (TF) muon spin rotation experiments on single crystals of the topological superconductor Sr$_x$Bi$_2$Se$_3$ with nominal concentrations $x=0.15$ and $0.18$ ($T_c sim 3$ K). The TF spectra ($B= 10$ mT), measured after coolin
The application of the muon-spin rotation/relaxation ($mu$SR) technique for studying type-I superconductivity is discussed. In the intermediate state, i.e. when a type-I superconducting sample with non-zero demagnetization factor $N$ is separated int
Muon spin rotation (muSR) experiments were performed on the intercalated graphite CaC6 in the normal and superconducting state down to 20 mK. In addition, AC magnetization measurements were carried out resulting in an anisotropic upper critical field
We report temperature- and magnetic field-dependent bulk muon spin rotation measurements in a c-axis oriented superconductor CaC6 in the mixed state. Using both a simple second moment analysis and the more precise analytical Ginzburg-Landau model, we