ﻻ يوجد ملخص باللغة العربية
We study the effect of a one dimensional periodic potential on the dynamic structure factor of an interacting Bose Einstein condensate at zero temperature. We show that, due to phononic correlations, the excitation strength towards the first band develops a typical oscillating behaviour as a function of the momentum transfer, and vanishes at even multiples of the Bragg momentum. The effects of interactions on the static structure factor are found to be significantly amplified by the presence of the optical potential. Our predictions can be tested in stimulated photon scattering experiments.
The speed of sound of a Bose-Einstein condensate in an optical lattice is studied both analytically and numerically in all three dimensions. Our investigation shows that the sound speed depends strongly on the strength of the lattice. In the one-dime
We investigate experimentally a Bose Einstein condensate placed in a 1D optical lattice whose phase or amplitude is modulated in a frequency range resonant with the first bands of the band structure. We study the combined effect of the strength of in
Surface modes in a Bose-Einstein condensate of sodium atoms have been studied. We observed excitations of standing and rotating quadrupolar and octopolar modes. The modes were excited with high spatial and temporal resolution using the optical dipole
Motivated by recent experimental observations (C.V. Parker {it et al.}, Nature Physics, {bf 9}, 769 (2013)), we analyze the stability of a Bose-Einstein condensate (BEC) in a one-dimensional lattice subjected to periodic shaking. In such a system the
We report on the efficient design of quantum optimal control protocols to manipulate the motional states of an atomic Bose-Einstein condensate (BEC) in a one-dimensional optical lattice. Our protocols operate on the momentum comb associated with the