ﻻ يوجد ملخص باللغة العربية
We present the experimental observation of magnetic field line curvature at the surface of a superconducting film by local quantitative magneto-optics. In addition to the knowledge of the full induction field at the superconductor surface yielding the quantitative observation of the flux line curvature, our analysis method allows also local value measurements of the electrical current density inside the sample. Thus, we study the interplay between the electrodynamic constraints dictated by the film geometry and the pinning properties of the superconductor. In particular, we investigate the anisotropic vortex-pinning, due to columnar defects introduced by heavy ion irradiation, as revealed in the local current density dependence on the vortex curvature during magnetic flux diffusion inside the superconducting film.
Nb films containing extended arrays of holes with 45-nm diameter and 100-nm spacing have been fabricated using anodized aluminum oxide (AAO) as substrate. Pronounced matching effects in the magnetization and Little-Parks oscillations of the supercond
We report on the direct observation of vortex states confined in equilateral and isosceles triangular dots of weak pinning amorphous superconducting thin films with a scanning superconducting quantum interference device microscope. The observed image
In order to compare magnetic and non-magnetic pinning we have nanostructured two superconducting films with regular arrays of pinning centers: Cu (non-magnetic) dots in one case, and Py (magnetic) dots in the other. For low applied magnetic fields, w
We discuss pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The E
The transport critical current of a Niobium (Nb) thick film has been measured for a large range of magnetic field. Its value and variation are quantitatively described in the framework of the pinning of vortices due to boundary conditions at the roug