ﻻ يوجد ملخص باللغة العربية
The evolution of the superconducting properties of the carbon-doped MgB2 superconductors, MgB(2-x)Cx (x= 0.02, 0.04, 0.06) have been investigated by the transverse-field muon spin rotation (TF-muSR) technique. The low-temperature depolarisation rate, sigma(0) at 0.6 T which is proportional to the second moment of the field distribution of the vortex lattice decreases monotonically with increasing electron doping and decreasing Tc. In addition, the temperature dependence of sigma(T) has been analysed in terms of a two-gap model. The size of the two superconducting gaps decreases linearly as the carbon content increases, while the doping effect is more pronounced for the smaller gap related to the 3D pi-sheets of the Fermi surface.
The high field magnetization and magneto transport measurements are carried out to determine the critical superconducting parameters of MgB2-xCx system. The synthesized samples are pure phase and the lattice parameters evaluation is carried out using
The use of MgB2 in superconducting applications still awaits for the development of a MgB2-based material where both current-carrying performance and critical magnetic field are optimized simultaneously. We achieved this by doping MgB2 with double-wa
We report the synthesis and variation of superconductivity parameters such as transition temperature Tc, upper critical field Hc, critical current density Jc, irreversibility field Hirr and flux pinning parameter (Fp) for the MgB2-xCx system with nan
Sintered samples of MgB2 were irradiated in a fission reactor. Defects in the bulk microstructure are produced during this process mainly by the 10B(n,a)7Li reaction while collisions of fast neutrons with the lattice atoms induce much less damage. Se
Neutron powder diffraction has been used to characterize a sample of C-substituted MgB2 synthesized from Mg and B4C (with isotopically enriched 11B). The sample is multiphase, with the major phase [73.4(1) wt.%] being Mg(B1-xCx)2 with x=0.10(2). Mino