ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in the t-J model

204   0   0.0 ( 0 )
 نشر من قبل Nikolay Plakida
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N.M. Plakida




اسأل ChatGPT حول البحث

A comparison of microscopic theories of superconductivity in the limit of strong electron correlations is presented. We consider results for the two-dimensional t-J model obtained within the projection technique for the Green functions in terms of the Hubbard operators and the slave-fermion representation for the RVB state. It is argued that the latter approach resulting in the odd-symmetry p-wave pairing for fermions is inadequate.



قيم البحث

اقرأ أيضاً

We present a systematic study of the phase diagram of the $t{-}t^prime{-}J$ model by using the Greens function Monte Carlo (GFMC) technique, implemented within the fixed-node (FN) approximation and a wave function that contains both antiferromagnetic and d-wave pairing. This enables us to study the interplay between these two kinds of order and compare the GFMC results with the ones obtained by the simple variational approach. By using a generalization of the forward-walking technique, we are able to calculate true FN ground-state expectation values of the pair-pair correlation functions. In the case of $t^prime=0$, there is a large region with a coexistence of superconductivity and antiferromagnetism, that survives up to $delta_c sim 0.10$ for $J/t=0.2$ and $delta_c sim 0.13$ for $J/t=0.4$. The presence of a finite $t^prime/t<0$ induces a strong suppression of both magnetic (with $delta_c lesssim 0.03$, for $J/t=0.2$ and $t^prime/t=-0.2$) and pairing correlations. In particular, the latter ones are depressed both in the low-doping regime and around $delta sim 0.25$, where strong size effects are present.
Unravelling competing orders emergent in doped Mott insulators and their interplay with unconventional superconductivity is one of the major challenges in condensed matter physics. To explore possible superconductivity state in the doped Mott insulat or, we study a square-lattice $t$-$J$ model with both the nearest and next-nearest-neighbor electron hoppings and spin Heisenberg interactions. By using the state-of-the-art density matrix renormalization group simulations with imposing charge $U(1)$ and spin $SU(2)$ symmetries on the large-scale six-leg cylinders, we establish a quantum phase diagram including three phases: a stripe charge density wave phase, a superconducting phase without static charge order, and a superconducting phase coexistent with a weak charge stripe order. Crucially, we demonstrate that the superconducting phase has a power-law pairing correlation decaying much slower than the charge density and spin correlations, which is a quasi-1D descendant of the uniform d-wave superconductor in two dimensions. These findings reveal that enhanced charge and spin fluctuations with optimal doping is able to produce robust d-wave superconductivity in doped Mott insulators, providing a foundation for connecting theories of superconductivity to models of strongly correlated systems.
64 - N.M. Plakida 2018
A microscopic theory of electronic spectrum and superconductivity within the $t$-$J$ model on the honeycomb lattice is formulated. The Dyson equation for the normal and anomalous Green functions for the two-band model in terms of the Hubbard operator s is derived by applying the Mori-type projection technique. The self-energy is evaluated in the self-consistent Born approximation for electron scattering on spin and charge fluctuations induced by the kinematical interaction for the Hubbard operators. Superconducting pairing mediated by the antiferromagnetic exchange and spin fluctuations is discussed.
We present numeric results for ground state and angle resolved photoemission spectra (ARPES) for single hole in t-J model coupled to optical phonons. The systematic-error free diagrammatic Monte Carlo is employed where the Feynman graphs for the Mats ubara Green function in imaginary time are summed up completely with respect to phonons variables, while magnetic variables are subjected to non-crossing approximation. We obtain that at electron-phonon coupling constants relevant for high Tc cuprates the polaron undergoes self-trapping crossover to strong coupling limit and theoretical ARPES demonstrate features observed in experiment: a broad peak in the bottom of the spectra has momentum dependence which coincides with that of hole in pure t-J model.
A systematic diagrammatic expansion for Gutzwiller-wave functions (DE-GWF) proposed very recently is used for the description of superconducting (SC) ground state in the two-dimensional square-lattice $t$-$J$ model with the hopping electron amplitude s $t$ (and $t$) between nearest (and next-nearest) neighbors. On the example of the SC state analysis we provide a detailed comparison of the method results with other approaches. Namely: (i) the truncated DE-GWF method reproduces the variational Monte Carlo (VMC) results; (ii) in the lowest (zeroth) order of the expansion the method can reproduce the analytical results of the standard Gutzwiller approximation (GA), as well as of the recently proposed grand-canonical Gutzwiller approximation (GCGA). We obtain important features of the SC state. First, the SC gap at the Fermi surface resembles a $d_{x^2-y^2}$-wave only for optimally- and overdoped system, being diminished in the antinodal regions for the underdoped case in a qualitative agreement with experiment. Corrections to the gap structure are shown to arise from the longer range of the real-space pairing. Second, the nodal Fermi velocity is almost constant as a function of doping and agrees semi-quantitatively with experimental results. Third, we compare the doping dependence of the gap magnitude with experimental data. Fourth, we analyze the $mathbf{k}$-space properties of the model: Fermi surface topology and effective dispersion. The DE-GWF method opens up new perspectives for studying strongly-correlated systems, as: (i) it works in the thermodynamic limit, (ii) is comparable in accuracy to VMC, and (iii) has numerical complexity comparable to GA (i.e., it provides the results much faster than the VMC approach).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا