ﻻ يوجد ملخص باللغة العربية
Many structural transformations involve a group-nonsubgroup relationship between the initial and transformed phases, and hence are beyond the purview of conventional Landau theory. We utilize a systematic and robust methodology to describe such reconstructive martensitic transformations by coupling group-theoretical arguments to first-principles calculations. In this context we (i) use a symmetry-based algorithm to enumerate transformation paths, (ii) evaluate the energy barriers along these transformation paths using all-electron first principles calculations, (iii) deduce the full set of primary and secondary order parameters for each path to establish the appropriate Ginzburg-Landau free-energy functionals, and (iv) for each path, identify special points of the primary order parameter, as a function of local distortions, corresponding to the end product phase. We apply this method to the study of a pressure driven body-centered cubic (bcc) to hexagonal close-packed (hcp) transformation in titanium. We find a generalization of the Burgers mechanism, and also find that there is no energy barrier to this transformation. In fact, surprisingly, we also find a region of volumes in which the intermediate path becomes more stable than either of the end-points (bcc or hcp). We therefore predict a new orthorhombic phase for Ti between 51 and 62 GPa.
The pressure induced bcc to hcp transition in Fe has been investigated via ab-initio electronic structure calculations. It is found by the disordered local moment (DLM) calculations that the temperature induced spin fluctuations result in the decreas
Extensive atomistic simulations based on the quasiparticle (QA) approach are performed to determine the momentous aspects of the displacive fcc/bcc phase transformation in a binary system. We demonstrate that the QA is able to predict the major struc
We determine from first-principles the Curie temperature Tc for bulk Co in the hcp, fcc, bcc, and tetragonalized bct phases, for FeCo alloys, and for bcc and bct Fe. For bcc-Co, Tc=1420 K is predicted. This would be the highest Curie temperature amon
Interplay between hydrogen and nanovoids, despite long-recognized as a central aspect in hydrogen-induced damages in structural materials, remains poorly understood. Focusing on tungsten as a model BCC system, the present study, for the first time, e
Dislocation motion in body centered cubic (bcc) metals displays a number of specific features that result in a strong temperature dependence of the flow stress, and in shear deformation asymmetries relative to the loading direction as well as crystal