ﻻ يوجد ملخص باللغة العربية
Strong-coupling expansions, to order $(t/J)^8$, are derived for the Kondo lattice model of strongly correlated electrons, in 1-, 2- and 3- dimensions at arbitrary temperature. Results are presented for the specific heat, and spin and charge susceptibilities.
We present new results for the Kondo lattice model of strongly correlated electrons, in 1-, 2-, and 3-dimensions, obtained from high-order linked-cluster series expansions. Results are given for varies ground state properties at half-filling, and for
A strong-coupling expansion for models of correlated electrons in any dimension is presented. The method is applied to the Hubbard model in $d$ dimensions and compared with numerical results in $d=1$. Third order expansion of the Green function suffi
The magnetic correlations, local moments and the susceptibility in the correlated 2D Kondo lattice model at half filling are investigated. We calculate their systematic dependence on the control parameters J_K/t and U/t. An unbiased and reliable exac
The previous theoretical study has shown that pulse irradiation to the Mott insulating state in the Hubbard model can induce the enhancement of superconducting correlation due to the generation of $eta$ pairs. Here, we show that the same mechanism ca
We analyze the magnetic and electronic properties of the quantum critical heavy fermion superconductor beta-YbAlB4, calculating the Fermi surface and the angular dependence of the extremal orbits relevant to the de Haas--van Alphen measurements. Usin