ﻻ يوجد ملخص باللغة العربية
Scanning tunneling spectroscopy of the high-Tc superconductor Bi2Sr2CaCu2O8+d reveals weak, incommensurate, spatial modulations in the tunneling conductance. Images of these energy-dependent modulations are Fourier analyzed to yield the dispersion of their wavevectors. Comparison of the dispersions with photoemission spectroscopy data indicates that quasiparticle interference, due to elastic scattering between characteristic regions of momentum-space, provides a consistent explanation for the conductance modulations, without appeal to another order parameter. These results refocus attention on quasiparticle scattering processes as potential explanations for other incommensurate phenomena in the cuprates. The momentum-resolved tunneling spectroscopy demonstrated here also provides a new technique with which to study quasiparticles in correlated materials.
The superconducting state is achieved by the condensation of Cooper pairs and is protected by the superconducting gap. The pairing interaction between the two electrons of a Cooper pair determines the superconducting gap function. Thus, it is very pi
Scanning tunneling microscopy is used to image the additional quasiparticle states generated by quantized vortices in the high-Tc superconductor Bi2Sr2CaCu2O8+d. They exhibit a Cu-O bond oriented checkerboard pattern, with four unit cell (4a0) period
Using both two orbital and five orbital models, we investigate the quasiparticle interference (QPI) patterns in the superconducting (SC) state of iron-based superconductors. We compare the results for nonmagnetic and magnetic impurities in sign-chang
A new low photon energy regime of angle resolved photoemission spectroscopy is accessed with lasers and used to study the superconductor Bi2Sr2CaCu2O8+delta. The low energy increases bulk sensitivity, reduces background, and improves resolution. With
The cuprate high-temperature superconductors are known to host a wide array of effects due to interactions and disorder. In this work, we look at some of the consequences of these effects which can be visualized by scanning tunneling spectroscopy. Th