ﻻ يوجد ملخص باللغة العربية
The single parameter scaling hypothesis is the foundation of our understanding of the Anderson transition. However, the conductance of a disordered system is a fluctuating quantity which does not obey a one parameter scaling law. It is essential to investigate the scaling of the full conductance distribution to establish the scaling hypothesis. We present a clear cut numerical demonstration that the conductance distribution indeed obeys one parameter scaling near the Anderson transition.
We analyze the scaling behavior of the higher Lyapunov exponents at the Anderson transition. We estimate the critical exponent and verify its universality and that of the critical conductance distribution for box, Gaussian and Lorentzian distributions of the random potential.
The boundary condition dependence of the critical behavior for the three dimensional Anderson transition is investigated. A strong dependence of the scaling function and the critical conductance distribution on the boundary conditions is found, while
We investigated numerically the distribution of participation numbers in the 3d Anderson tight-binding model at the localization-delocalization threshold. These numbers in {em one} disordered system experience strong level-to-level fluctuations in a
The distribution of the correlation dimension in a power law band random matrix model having critical, i.e. multifractal, eigenstates is numerically investigated. It is shown that their probability distribution function has a fixed point as the syste
We study the level-spacing distribution function $P(s)$ at the Anderson transition by paying attention to anomalously localized states (ALS) which contribute to statistical properties at the critical point. It is found that the distribution $P(s)$ fo