ﻻ يوجد ملخص باللغة العربية
A seminal milestone in lattice statistics is the exact solution of the enumeration of dimers on a simple-quartic net obtained by Fisher,Kasteleyn, and Temperley (FKT) in 1961. An outstanding related and yet unsolved problem is the enumeration of dimers on a net with vacant sites. Here we consider this vacant-site problem with a single vacancy occurring at certain specific sites on the boundary of a simple-quartic net. First, using a bijection between dimer and spanning tree configurations due to Temperley, Kenyon, Propp, and Wilson, we establish that the dimer generating function is independent of the location of the vacancy, and deduce a closed-form expression for the generating function. We next carry out finite-size analyses of this solution as well as that of the FKT solution. Our analyses lead to a logarithmic correction term in the large-size expansion for the vacancy problem with free boundary conditions. A concrete example exhibiting this difference is given. We also find the central charge c=-2 in the language of conformal field theory for the vacancy problem, as versus the value c=1 when there is no vacancy.
We obtain the exact large deviation functions of the density profile and of the current, in the non-equilibrium steady state of a one dimensional symmetric simple exclusion process coupled to boundary reservoirs with slow rates. Compared to earlier r
We derive exact results for close-packed dimers on the triangular kagome lattice (TKL), formed by inserting triangles into the triangles of the kagome lattice. Because the TKL is a non-bipartite lattice, dimer-dimer correlations are short-ranged, so
We consider the dynamics of fluctuations in the quantum asymmetric simple exclusion process (Q-ASEP) with periodic boundary conditions. The Q-ASEP describes a chain of spinless fermions with random hoppings that are induced by a Markovian environment
We study the probability distribution of entanglement in the Quantum Symmetric Simple Exclusion Process, a model of fermions hopping with random Brownian amplitudes between neighboring sites. We consider a protocol where the system is initialized in
We study the finite-temperature behavior of the Lipkin-Meshkov-Glick model, with a focus on correlation properties as measured by the mutual information. The latter, which quantifies the amount of both classical and quantum correlations, is computed