ﻻ يوجد ملخص باللغة العربية
The paper reports the first successful fabrication of MgB2 superconducting tape using a flexible metallic substrate as well as its strong pinning force, which was verified by direct measurement of transport critical current density. The tape was prepared by depositing MgB2 film on a Hastelloy tape buffered with an YSZ layer. The Jc of the tape exceeds 105A/cm2 at 4.2K and 10T, which is considered as a common benchmark for magnet application. The Jc dependence on magnetic field remains surprisingly very small up to 10T, suggesting that the tape has much better magnetic field characteristic than conventional Nb-Ti wires in liquid helium.
Fe-clad MgB2 long tapes have been fabricated using a powder-in-tube technique. An Mg + 2B mixture was used as the central conductor core and reacted in-situ to form MgB2. The tapes were sintered in pure Ar at 800 ^(o) C for 1 h at ambient pressure. S
A relatively high critical temperature, Tc, approaching 40 K, places the recently-discovered superconductor magnesium diboride (MgB2) intermediate between the families of low- and copper-oxide-based high-temperature superconductors (HTS). Supercurren
We investigated the effect of nanoscale-C doping on the critical current density Jc and irreversibility field Birr of Fe-sheathed MgB2 tapes prepared by the in-situ powder-in-tube method. The tapes were heat treated at 600-950C for 1 h. Higher values
The high resistivity of many bulk and film samples of MgB2 is most readily explained by the suggestion that only a fraction of the cross-sectional area of the samples is effectively carrying current. Hence the supercurrent (Jc) in such samples will b
We theoretically investigate the physical mechanism of the screening-current-induced field (SCIF) in solenoid coils wound with superconducting tape wires. We derive the direct relationship between the SCIF and the magnetization of tape wires, and a s