ﻻ يوجد ملخص باللغة العربية
The mean-field Landau-type theory is used to analyze the polarization properties of epitaxial ferroelectric thin films grown on dissimilar cubic substrates, which induce biaxial compressive stress in the film plane. The intrinsic effect of the film surfaces on the spontaneous polarization is taken into account via the concept of the extrapolation length. The theory simultaneously allows for the influence of the misfit strain imposed on the film lattice by a thick substrate. Numerical calculations are performed for PbTiO3 and BaTiO3 films under an assumption of the polarization reduction in surface layers. The film mean polarization is calculated as a function of film thickness, temperature, and misfit strain. It is shown that the negative intrinsic size effect is reduced in epitaxial films due to the in-plane compression of the film lattice. At room temperature, strong reduction of the mean polarization may take place only in ultrathin films (thickness ~ 1 nm). Theoretical predictions are compared with the available experimental data on polarization properties of BaTiO3 films grown on SrRuO3 coated SrTiO3.
Domain structures of 320 nm thin epitaxial films of ferroelectric PbTiO3 grown by MOCVD technique in identical conditions on SmScO3 and TbScO3 perovskite sub- strates have been investigated by Raman spectroscopy and piezoresponse force microscopy tec
Recently, hexagonal boron nitride (hBN) layers have generated a lot of interest as ideal substrates for 2D stacked devices. Sapphire-supported thin hBN films of different thicknesses are grown using metalorganic vapour phase epitaxy technique by foll
The discovery of stable room temperature ferroelectricity in Croconic Acid, an organic ferroelectric material, with polarization values on par with those found in inorganic ferroelectric materials and highest among organic ferroelectric materials, ha
Ferroelectric BaTiO3 films with large polarization have been integrated with Si(001) by pulsed laser deposition. High quality c-oriented epitaxial films are obtained in a substrate temperature range of about 300 deg C wide. The deposition temperature
Co2FeAl (CFA) thin films with thickness varying from 10 nm to 115 nm have been deposited on MgO(001) substrates by magnetron sputtering and then capped by Ta or Cr layer. X-rays diffraction (XRD) revealed that the cubic $[001]$ CFA axis is normal to