ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixing and equilibration: Protagonists in the scene of nonextensive statistical mechanics

76   0   0.0 ( 0 )
 نشر من قبل Ernesto Pinheiro Borges
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After a brief review of the present status of nonextensive statistical mechanics, we present a conjectural scenario where mixing (characterized by the entropic index $q_{mix} le 1$) and equilibration (characterized by the entropic index $q_{eq} ge 1$) play central and inter-related roles, and appear to determine {it a priori} the values of the relevant indices of the formalism. Boltzmann-Gibbs statistical mechanics is recovered as the $q_{mix}=q_{eq}=1$ particular case.



قيم البحث

اقرأ أيضاً

We introduce a two-dimensional growth model where every new site is located, at a distance $r$ from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+alpha_G} (alpha_G ge 0)$, and is attached to (only) one pre-existin g site with a probability $propto k_i/r^{alpha_A}_i (alpha_A ge 0$; $k_i$ is the number of links of the $i^{th}$ site of the pre-existing graph, and $r_i$ its distance to the new site). Then we numerically determine that the probability distribution for a site to have $k$ links is asymptotically given, for all values of $alpha_G$, by $P(k) propto e_q^{-k/kappa}$, where $e_q^x equiv [1+(1-q)x]^{1/(1-q)}$ is the function naturally emerging within nonextensive statistical mechanics. The entropic index is numerically given (at least for $alpha_A$ not too large) by $q = 1+(1/3) e^{-0.526 alpha_A}$, and the characteristic number of links by $kappa simeq 0.1+0.08 alpha_A$. The $alpha_A=0$ particular case belongs to the same universality class to which the Barabasi-Albert model belongs. In addition to this, we have numerically studied the rate at which the average number of links $<k_i>$ increases with the scaled time $t/i$; asymptotically, $<k_i > propto (t/i)^beta$, the exponent being close to $beta={1/2}(1-alpha_A)$ for $0 le alpha_A le 1$, and zero otherwise. The present results reinforce the conjecture that the microscopic dynamics of nonextensive systems typically build (for instance, in Gibbs $Gamma$-space for Hamiltonian systems) a scale-free network.
We propose a two-parametric non-distributive algebraic structure that follows from $(q,q)$-logarithm and $(q,q)$-exponential functions. Properties of generalized $(q,q)$-operators are analyzed. We also generalize the proposal into a multi-parametric structure (generalization of logarithm and exponential functions and the corresponding algebraic operators). All $n$-parameter expressions recover $(n-1)$-generalization when the corresponding $q_nto1$. Nonextensive statistical mechanics has been the source of successive generalizations of entropic forms and mathematical structures, in which this work is a consequence.
The nonextensive statistical ensembles are revisited for the complex systems with long-range interactions and long-range correlations. An approximation, the value of nonextensive parameter (1-q) is assumed to be very tiny, is adopted for the limit of large particle number for most normal systems. In this case, Tsallis entropy can be expanded as a function of energy and particle number fluctuation, and thus the power-law forms of the generalized Gibbs distribution and grand canonical distribution can be derived. These new distribution functions can be applied to derive the free energy and grand thermodynamic potential in nonextensive thermodynamics. In order to establish appropriate nonextensive thermodynamic formalism, the dual thermodynamic interpretations are necessary for thermodynamic relations and thermodynamic quantities. By using a new technique of parameter transformation, the single-particle distribution can be deduced from the power-law Gibbs distribution. This technique produces a link between the statistical ensemble and the quasi-independent system with two kinds of nonextensive parameter having quite different physical explanations. Furthermore, the technique is used to construct nonextensive quantum statistics and effectively to avoid the factorization difficulty in the power-law grand canonical distribution.
An interesting connection between the Regge theory of scattering, the Veneziano amplitude, the Lee-Yang theorems in statistical mechanics and nonextensive Renyi entropy is addressed. In this scheme the standard entropy and the Renyi entropy appear to be different limits of a unique mathematical object. This framework sheds light on the physical origin of nonextensivity. A non trivial application to spin glass theory is shortly outlined.
94 - P. Kozlowski , M. Marsili 2003
The majority game, modelling a system of heterogeneous agents trying to behave in a similar way, is introduced and studied using methods of statistical mechanics. The stationary states of the game are given by the (local) minima of a particular Hopfi eld like hamiltonian. On the basis of a replica symmetric calculations, we draw the phase diagram, which contains the analog of a retrieval phase. The number of metastable states is estimated using the annealed approximation. The results are confronted with extensive numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا