ﻻ يوجد ملخص باللغة العربية
Wurtzite (Ga,Mn)N films showing ferromagnetic behaviour at room temperature were successfully grown on sapphire(0001) substrates by molecular beam epitaxy using ammonia as nitrogen source. Magnetization measurements were carried out by a superconducting quantum interference device at the temperatures between 1.8K and 300K with magnetic field applied parallel to the film plane up to 7T. The magnetic-field dependence of magnetization of a (Ga,Mn)N film at 300K were ferromagnetic, while a GaN film showed Pauli paramagnetism like behaviour. The Curie temperatures of a (Ga,Mn)N film was estimated as 940K.
A range of high quality Ga1-xMnxN layers have been grown by molecular beam epitaxy with manganese concentration 0.2 < x < 10%, having the x value tuned by changing the growth temperature (Tg) between 700 and 590 {deg}C, respectively. We present a sys
Hexagonal boron nitride (hBN) has been grown on sapphire substrates by ultra-high temperature molecular beam epitaxy (MBE). A wide range of substrate temperatures and boron fluxes have been explored, revealing that high crystalline quality hBN layers
(Ga,Mn)As in wurtzite crystal structure, is coherently grown by molecular beam epitaxy on the {1100} side facets of wurtizte (Ga,In)As nanowires and further encapsulated by (Ga,Al)As and low temperature GaAs. For the first time a true long-range ferr
GaAs:Mn nanowires were obtained on GaAs(001) and GaAs(111)B substrates by molecular beam epitaxial growth of (Ga,Mn)As at conditions leading to MnAs phase separation. Their density is proportional to the density of catalyzing MnAs nanoislands, which
We present an experimental investigation of the magnetic, electrical and structural properties of Ga0.94Mn0.06As1-yPy layers grown by molecular beam epitaxy on GaAs substrates for y less than or equal to 0.3. X-ray diffraction measurements reveal tha