ترغب بنشر مسار تعليمي؟ اضغط هنا

Constancy of the bilayer splitting as a function of doping in $Bi_{2}Sr_{2}CaCu_{2}O_{8+delta}$

87   0   0.0 ( 0 )
 نشر من قبل Yi-De Chuang
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y.-D. Chuang




اسأل ChatGPT حول البحث

Using high energy resolution angle resolved photoemission spectroscopy, we have resolved the bilayer splitting effect in a wide range of dopings of the bilayer cuprate $Bi_{2}Sr_{2}CaCu_{2}O_{8+delta}$. This bilayer splitting is due to a nonvanishing intracell coupling $t_{perp}$, and contrary to expectations, it is not reduced in the underdoped materials. This has implications for understanding the increased c-axis confinement in underdoped materials.



قيم البحث

اقرأ أيضاً

Measurements of non-local in-plane resistance originating from transverse vortex-vortex correlations have been performed on a Bi_{2}Sr_{2}CaCu_{2}O_{8+delta} high-T_c superconductor in a magnetic field up to 9 T applied along the crystal c-axis. Our results demonstrate that a rigid vortex lattice does exist over a broad portion of the magnetic field -- temperature (H-T) phase diagram, well above the first-order transition boundary H_{FOT}(T). The results also provide evidence for the vortex lattice melting and vortex liquid decoupling phase transitions, occurring above the H_{FOT}(T).
155 - J.W. Alldredge 2007
A complete knowledge of its excitation spectrum could greatly benefit efforts to understand the unusual form of superconductivity occurring in the lightly hole-doped copper-oxides. Here we use tunnelling spectroscopy to measure the Tto 0 spectrum of electronic excitations N(E) over a wide range of hole-density p in superconducting Bi_{2}Sr_{2}CaCu_{2}O_{8+/delta}. We introduce a parameterization for N(E) based upon an anisotropic energy-gap /Delta (vec k)=/Delta_{1}(Cos(k_{x})-Cos(k_{y}))/2 plus an effective scattering rate which varies linearly with energy /Gamma_{2}(E) . We demonstrate that this form of N(E) allows successful fitting of differential tunnelling conductance spectra throughout much of the Bi_{2}Sr_{2}CaCu_{2}O_{8+/delta} phase diagram. The resulting average /Delta_{1} values rise with falling p along the familiar trajectory of excitations to the pseudogap energy, while the key scattering rate /Gamma_{2}^{*}=/Gamma_{2}(E=/Delta_{1}) increases from below ~1meV to a value approaching 25meV as the system is underdoped from p~16% to p<10%. Thus, a single, particle-hole symmetric, anisotropic energy-gap, in combination with a strongly energy and doping dependent effective scattering rate, can describe the spectra without recourse to another ordered state. Nevertheless we also observe two distinct and diverging energy scales in the system: the energy-gap maximum /Delta_{1} and a lower energy scale /Delta_{0} separating the spatially homogeneous and heterogeneous electronic structures.
We present realistic multiband calculations of scanning tunneling spectra in Bi_{2}Sr_{2}CaCu_{2} O_{8+delta} over a wide doping range. Our modeling incorporates effects of a competing pseudogap and pairing gap as well as effects of strong electronic correlations, which are included by introducing self-energy corrections in the one-particle propagators. The calculations provide a good description of the two-gap features seen in experiments at low energies and the evolution of the Van Hove singularity (VHS) with doping, and suggest a possible quantum critical point near the point where the VHS crosses the Fermi level.
Strong variations in superconducting critical temperatures in different families of the cuprate perovskites, even with similar hole doping in their copper-oxygen planes, suggest the importance of lattice modulation effects. The one-dimensional incomm ensurate lattice modulation (ILM) of Bi_2Sr_2CaCu_2O_{8+y}, with the average atomic positions perturbed beyond the unit cell, offers an ideal test ground for studying the interplay between superconductivity and the long-range incommensurate lattice fluctuations. Here we report Scanning nano X-ray Diffraction (SnXRD) imaging of incommensurate lattice modulations in Bi_{2.1}Sr_{1.9}CaCu_{2.0}O_{8+{delta}} Van der Waals heterostructures of thicknesses down to two-unit cells. Using SnXRD, we probe that the long-range and short-range incommensurate lattice modulations in bulk sample surface with spatial resolution below 100 nm. We find that puddle-like domains of ILM of size uniformly evolving with dimensionality. In the 2-unit cell thin sample, it is observed that the wavevectors of the long- and short-range orders become anti-correlated with emerging spatial patterns having a directional gradient. The emerging patterns, originated by tiny tuning of lattice strain, induce static mesoscopic charge density waves. Our findings thus demonstrate that the strain can be used to tune and control the electromagnetic properties of two-dimensional high-temperature superconductors.
197 - Yoichi Ando , T. Murayama , 2000
Recently we have succeeded in growing a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals in a wide range of carrier concentrations. The data of rho_{ab}(T) and R_H(T) of those crystals show behaviors that are considered to be canonical to the cuprates. The optimum zero-resistance T_c has been raised to as high as 38 K, which is almost equal to the optimum T_c of La_{2-x}Sr_{x}CuO_{4}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا