ترغب بنشر مسار تعليمي؟ اضغط هنا

29-Si NMR and Hidden Order in URu2Si2

73   0   0.0 ( 0 )
 نشر من قبل Oscar O. Bernal
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. O. Bernal




اسأل ChatGPT حول البحث

We present new 29-Si NMR spectra in URu2Si2 for varying temperature T, and external field H. On lowering T, the systematics of the low-field lineshape and width reveal an extra component (lambda) to the linewidth below T_N ~ 17 K not observed previously. We find that lambda is magnetic-field independent and dominates the low-field lineshape for all orientations of H with respect to the tetragonal c axis. The behavior of lambda indicates a direct relationship between the 29-Si spin and the transition at T_N, but it is inconsistent with a coupling of the nuclei to static antiferromagnetic order/disorder of the U-spin magnetization. This leads us to conjecture that lambda is due to a coupling of 29-Si to the systems hidden-order parameter. A possible coupling mechanism involving charge degrees of freedom and indirect nuclear spin/spin interactions is proposed. We also propose further experiments to test for the existence of this coupling mechanism.



قيم البحث

اقرأ أيضاً

By means of neutron scattering we show that the high-temperature precursor to the hidden order state of the heavy fermion superconductor URu$_{2}$Si$_{2}$ exhibits heavily damped incommensurate paramagnons whose strong energy dispersion is very simil ar to that of the long-lived longitudinal f-spin excitations that appear below T$_{0}$. Since the underlying local f-exchange is preserved we expect only the f-d interactions to change across the phase transition and to cause the paramagnetic damping. The damping exhibits single-ion behavior independent of wave vector and vanishes below the hidden order transition. We suggest that this arises from a transition from valence fluctuations to a hybridized f-d state below T$_{0}$. Here we present evidence that the itinerant excitations, like those in chromium, are due to Fermi surface nesting of hole and electron pockets so that the hidden order phase likely originates from a Fermi-surface instability. We identify wave vectors that span nested regions of a band calculation and that match the neutron spin crossover from incommensurate to commensurate on approach to the hidden order phase.
98 - W. Knafo , F. Duc , F. Bourdarot 2016
URu2Si2 is one of the most enigmatic strongly-correlated-electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temp erature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically-ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to an instrumentation breakthrough in high-field neutron scattering, we identify the field-induced phases of URu2Si2 as a spin-density-wave state with wavevector k1 = (0.6 0 0). The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations, and the Fermi surface is emphasized, calling for dedicated band structure calculations.
The hidden order developing below 17.5K in the heavy fermion material URu2Si2 has eluded identification for over twenty five years. This paper will review the recent theory of ``hastatic order, a novel two-component order parameter capturing the hybr idization between half-integer spin (Kramers) conduction electrons and the non-Kramers 5f^2 Ising local moments, as strongly indicated by the observation of Ising quasiparticles in de Haas-van Alphen measurements. Hastatic order differs from conventional magnetism as it is a spinor order that breaks both single and double time-reversal symmetry by mixing states of different Kramers parity. The broken time-reversal symmetry simply explains both the pseudo-Goldstone mode between the hidden order and antiferromagnetic phases and the nematic order seen in torque magnetometry. The spinorial nature of the hybridization also explains how the Kondo effect gives a phase transition, with the hybridization gap turning on at the hidden order transition as seen in scanning tunneling microscopy. Hastatic order also has a number of new predictions: a basal-plane magnetic moment of order .01mu_B, a gap to longitudinal spin fluctuations that vanishes continuously at the first order antiferromagnetic transition and a narrow resonant nematic feature in the scanning tunneling spectra.
In the hidden order of URu2Si2 the resistivity at very low temperature shows no T^2 behavior above the transition to superconductivity. However, when entering the antiferromagnetic phase, the Fermi liquid behavior is recovered. We discuss the change of the inelastic term when entering the AF phase with pressure considering the temperature dependence of the Grueneisen parameter at ambient pressure and the influence of superconductivity by an extrapolation of high field data.
484 - E Hassinger , D Aoki , F Bourdarot 2009
We describe here recent inelastic neutron scattering experiments on the heavy fermion compound URu2Si2 realized in order to clarify the nature of the hidden order (HO) phase which occurs below T_0 = 17.5 K at ambient pressure. The choice was to measu re at a given pressure P where the system will go, by lowering the temperature, successively from paramagnetic (PM) to HO and then to antiferromagnetic phase (AF). Furthermore, in order to verify the selection of the pressure, a macroscopic detection of the phase transitions was also achieved in situ via its thermal expansion response detected by a strain gauge glued on the crystal. Just above P_x = 0.5 GPa, where the ground state switches from HO to AF, the Q_0 = (1, 0, 0) excitation disappears while the excitation at the incommensurate wavevector Q_1 = (1.4, 0, 0) remains. Thus, the Q_0 = (1, 0, 0) excitation is intrinsic only in the HO phase. This result is reinforced by studies where now pressure and magnetic field $H$ can be used as tuning variable. Above P_x, the AF phase at low temperature is destroyed by a magnetic field larger than H_AF (collapse of the AF Q_0 = (1, 0, 0) Bragg reflection). The field reentrance of the HO phase is demonstrated by the reappearance of its characteristic Q_0 = (1, 0, 0) excitation. The recovery of a PM phase will only be achieved far above H_AF at H_M approx 35 T. To determine the P-H-T phase diagram of URu2Si2, macroscopic measurements of the thermal expansion were realized with a strain gauge. The reentrant magnetic field increases strongly with pressure. Finally, to investigate the interplay between superconductivity (SC) and spin dynamics, new inelastic neutron scattering experiments are reported down to 0.4 K, far below the superconducting critical temperature T_SC approx 1.3 K as measured on our crystal by diamagnetic shielding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا