ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual magnetic susceptibility anisotropy in untwinned La_{2-x}Sr_xCuO_4 single crystals in the lightly-doped region

148   0   0.0 ( 0 )
 نشر من قبل Alexander Lavrov
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the magnetic susceptibility in carefully detwinned La_{2-x}Sr_{x}CuO_4 single crystals in the lightly-doped region (x=0-0.03), which demonstrates a remarkable in-plane anisotropy of the spin system. This anisotropy is found to persist after the long-range antiferromagnetic (AF) order is destroyed by hole doping, suggesting that doped holes break the AF order into domains in which the spin alignment is kept essentially intact. It turns out that the freezing of the spins taking place at low temperatures is also notably anisotropic, implying that the spin-glass feature is governed by the domain structure as well.



قيم البحث

اقرأ أيضاً

Resistivity and magnetization measurements are used for studying the transverse sliding of AF domain boundaries in lightly doped La_{2-x}Sr_{x}CuO_{4}. We discuss that it is the freezing of the transverse boundary motion that is responsible for the a ppearance of ``spin-glass features at low temperatures.
Magnetotransport measurements on the overdoped cuprate La_{1.7}Sr_{0.3}CuO_4 are fitted using the Ong construction and band parameters inferred from angle-resolved photoemission. Within a band picture, the low temperature Hall data can only be fitted satisfactorily by invoking strong basal-plane anisotropy in the mean-free-path $ell$. This violation of the isotropic-$ell$ approximation supports a picture of dominant small-angle elastic scattering in cuprates due to out-of-plane substitutional disorder. We show that both band anisotropy and anisotropy in the elastic scattering channel strongly renormalize the Hall coefficient in overdoped La_{2-x}Sr_xCuO_4 over a wide doping and temperature range.
139 - V. Baledent , B. Fauque , Y. Sidis 2010
In high temperature copper oxides superconductors, a novel magnetic order associated with the pseudogap phase has been identified in two different cuprate families over a wide region of temperature and doping. We here report the observation below 120 K of a similar magnetic ordering in the archetypal cuprate ${rm La_{2-x}Sr_xCuO_4}$ (LSCO) system for x=0.085. In contrast to the previous reports, the magnetic ordering in LSCO is {itbf only} short range with an in-plane correlation length of $sim$ 10 AA and is bidimensional (2D). Such a less pronounced order suggests an interaction with other electronic instabilities. In particular, LSCO also exhibits a strong tendency towards stripes ordering at the expense of the superconducting state.
78 - T. Machi , I. Kato , R. Hareyama 2003
The effects of nonmagnetic Zn and magnetic Ni substitution for Cu site on magnetism are studied by measurements of uniform magnetic susceptibility for lightly doped La_{2-x}Sr_xCu_{1-z}M_zO_4 (M=Zn or Ni) polycrystalline samples. For the parent x=0, Zn doping suppresses the N{e}el temperature T_N whereas Ni doping hardly changes T_N up to z=0.3. For the lightly doped samples with T_N~0, the Ni doping recovers T_N. For the superconducting samples, the Ni doping induces the superconductivity-to-antiferromagnetic transition (or crossover). All the heavily Ni doped samples indicate a spin glass behavior at ~15 K.
The remarkable sensitivity of the c-axis resistivity and magnetoresistance in cuprates to the spin ordering is used to clarify the doping-induced transformation from an antiferromagnetic (AF) insulator to a superconducting (SC) metal in RBa_2Cu_3O_{6 +x} (R = Lu, Y) single crystals. The established phase diagram demonstrates that the AF and SC regions apparently overlap: the superconductivity in RBa_2Cu_3O_{6+x}, in contrast to La_{2-x}Sr_xCuO_4, sets in before the long-range AF order is completely destroyed by hole doping. Magnetoresistance measurements of superconducting crystals with low T_c<15-20 K give a clear view of the magnetic-field induced superconductivity suppression and recovery of the long-range AF state. What still remains to be understood is whether the AF order actually persists in the SC state or just revives when the superconductivity is suppressed, and, in the former case, whether the antiferromagnetism and superconductivity reside in nanoscopically separated phases or coexist on an atomic scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا