ﻻ يوجد ملخص باللغة العربية
We investigate the anti-adiabatic limit of an anti-ferromagnetic S=1/2 Heisenberg chain coupled to Einstein phonons. The flow equation method is used to decouple the spin and the phonon part of the Hamiltonian. In the effective spin model long range spin-spin interactions are generated. We determine the phase transition from a gapless state to a gapped (dimerised) phase, which occurs at a non-zero value of the spin-phonon coupling. In the effective phonon sector a phonon hardening is observed.
We investigate the antiadiabatic limit of an antiferromagnetic S=1/2 Heisenberg chain coupled to Einstein phonons via a bond coupling. The flow equation method is used to decouple the spin and the phonon part of the Hamiltonian. In the effective spin
We establish a direct connection between inhomogeneous XX spin chains (or free fermion systems with nearest-neighbors hopping) and certain QES models on the line giving rise to a family of weakly orthogonal polynomials. We classify all such models an
We utilize near-infrared femtosecond pulses to investigate coherent phonon oscillations of Ca2RuO4. The coherent Ag phonon mode of the lowest frequency changes abruptly not only its amplitude but also the oscillation-phase as the spin order develops.
The existence and stability of spin-liquid phases represent a central topic in the field of frustrated magnetism. While a few examples of spin-liquid ground states are well established in specific models (e.g. the Kitaev model on the honeycomb lattic
We present the class of models of a nonmagnetic impurity in S=1/2 generalized ladder with an AKLT-type valence bond ground state, and of a S=1/2 impurity in the S=1 AKLT chain. The ground state in presence of impurity can be found exactly. Recently s