ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Reversal-Symmetry Violation and Coexistence of Superconducting and Magnetic Order in CeRh(1-x)Ir(x)In(5)

77   0   0.0 ( 0 )
 نشر من قبل Robert H. Heffner
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper has been withdrawn by the authors. We performed additional zero-field muon spin relaxation measurements in the superconducting state of CeIrIn$_5$ and found that the spontaneous fields reported previously below $T_c$ are not present. Thus, there is no evidence for a time-reversal-symmetry-violating superconducting order parameter. These new zero-field measurements, as well as new measurements of the penetration depth in this system, will be reported elsewhere. Our zero-field measurements in CeIr$_{0.5}$Rh$_{0.5}$In$_5$, reporting coexistence of superconductivity and magnetic order, are still valid.



قيم البحث

اقرأ أيضاً

The evolution of the Fermi surface of CeRh$_{1-x}$Co$_x$In$_5$ was studied as a function of Co concentration $x$ via measurements of the de Haas-van Alphen effect. By measuring the angular dependence of quantum oscillation frequencies, we identify a Fermi surface sheet with $f$-electron character which undergoes an abrupt change in topology as $x$ is varied. Surprisingly, this reconstruction does not occur at the quantum critical concentration $x_c$, where antiferromagnetism is suppressed to T=0. Instead we establish that this sudden change occurs well below $x_c$, at the concentration x ~ 0.4 where long range magnetic order alters its character and superconductivity appears. Across all concentrations, the cyclotron effective mass of this sheet does not diverge, suggesting that critical behavior is not exhibited equally on all parts of the Fermi surface.
We have measured the superconducting penetration depth~$Lambda(T)$ in the heavy-fermion/intermediate-valent superconducting alloy series~Ce$_{1-x}$Yb$_x$CoIn$_5$ using transverse-field muon spin relaxation, to study the effect of intermediate-valent Yb doping on Fermi-liquid renormalization. From $Lambda(T)$ we determine the superfluid density $rho_s(T)$, and find that it decreases continuously with increasing nominal Yb concentration~$x$, i.e., with increasing intermediate valence. The temperature-dependent renormalization of the normal fluid density~$rho_N(T) = rho_s(0) - rho_s(T)$ in both the heavy-fermion and intermediate valence limits is proportional to the temperature-dependent renormalization of the specific heat. This indicates that the temperature-dependent Fermi-liquid Landau parameters of the superconducting quasiparticles entering the two different physical quantities are the same. These results represent an important advance in understanding of both intermediate valence and heavy-fermion phenomena in superconductors.
Electronic nematicity in correlated metals often occurs alongside another instability such as magnetism. As a result, the question remains whether nematicity alone can drive unconventional superconductivity or anomalous (quantum critical) transport i n such systems. In FeSe, nematicity emerges in isolation, providing a unique opportunity to address this question. Studies to date, however, have proved inconclusive; while signatures of nematic criticality are observed upon sulfur substitution, they appear to be quenched under the application of pressure due to the emergent magnetism. Here, we study the temperature and pressure dependence of the low-temperature resistivity of FeSe$_{1-x}$S$_{x}$ crystals at $x$ values just beyond the nematic quantum critical point. Two distinct components to the resistivity are revealed; one whose magnitude falls with increasing pressure and one which grows upon approaching the magnetic state at higher pressures. These findings indicate that nematic and magnetic critical fluctuations in FeSe$_{1-x}$S$_{x}$ are completely decoupled, in marked contrast to other Fe-based superconductors, and that nematic fluctuations alone may be responsible for the transport signatures of quantum criticality found in FeSe$_{1-x}$S$_{x}$ at ambient pressure.
In this paper we review some of our recent experimental and theoretical results on transport and thermodynamic properties of heavy-fermion alloys Ce(1-x)Yb(x)CoIn5. Charge transport measurements under magnetic field and pressure on these single cryst alline alloys revealed that: (i) relatively small Yb substitution suppresses the field induced quantum critical point, with a complete suppression for nominal Yb doping x>0.20; (ii) the superconducting transition temperature Tc and Kondo lattice coherence temperature T* decrease with x, yet they remain finite over the wide range of Yb concentrations; (iii) both Tc and T* increase with pressure; (iv) there are two contributions to resistivity, which show different temperature and pressure dependences, implying that both heavy and light quasiparticles contribute to inelastic scattering. We also analyzed theoretically the pressure dependence of both T* and Tc within the composite pairing theory. In the purely static limit, when we ignore the lattice dynamics, we find that the composite pairing mechanism necessarily causes opposite behaviors of T* and Tc with pressure: if T* grows with pressure, Tc must decrease with pressure and vice versa.
States of matter that break time-reversal symmetry are invariably associated with magnetism or circulating currents. Recently, one of us proposed a phase, the directional scalar spin chiral order (DSSCO), as an exception: it breaks time-reversal symm etry via chiral ordering of spins along a particular direction, but is spin-rotation symmetric. In this work, we prove the existence of this state via state-of-the-art density matrix renormalization group (DMRG) analysis on a spin-1 chain with nearest-neighbor bilinear-biquadratic interactions and additional third-neighbor ferromagnetic Heisenberg exchange. Despite the large entanglement introduced by the third-neighbor coupling, we are able to access system sizes up to $L=918$ sites. We find first order phase transitions from the DSSCO into the famous Haldane phase as well as a spin-quadrupolar phase where spin nematic correlations dominate. In the Haldane phase, we propose and demonstrate a method for detecting the topological edge states using DMRG that could be useful for other topological phases too.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا