ﻻ يوجد ملخص باللغة العربية
By high temperature series expansion, exact diagonalisation and temperature density-matrix renormalisation the magnetic susceptibility $chi(T)$ and the specific heat $C(T)$ of dimerised and frustrated $S=1/2$ chains are computed. All three methods yield reliable results, in particular for not too small temperatures or not too small gaps. The series expansion results are provided in the form of polynomials allowing very fast and convenient fits in data analysis using algebraic programmes. We discuss the difficulty to extract more than two coupling constants from the temperature dependence of $chi(T)$.
The magnetoelectric (ME) effects are investigated in a cubic compound SrCuTe2O6, in which uniform Cu2+ (S=1/2) spin chains with considerable spin frustration exhibit a concomitant antiferromagnetic transition and dielectric constant peak at TN=5.5 K.
Thermodynamic properties of the S=1/2 Heisenberg chain in transverse staggered magnetic field H^y_s and uniform magnetic field H^x perpendicular to the staggered field is studied by the finite-temperature density-matrix renormalization-group method.
Thermodynamics of a spin-1 Bose gas with ferromagnetic interactions are investigated via the mean-field theory. It is apparently shown in the specific heat curve that the system undergoes two phase transitions, the ferromagnetic transition and the Bo
We present the results of the magnetization and dielectric constant measurements on untwinned single crystal samples of the frustrated S=1/2 chain cuprate LiCu_2O_2. Novel magnetic phase transitions were observed. A spin flop transition of the spiral
We investigate the magnetic properties of spin-$1/2$ charged Fermi gases with ferromagnetic coupling via mean-field theory, and find the interplay among the paramagnetism, diamagnetism and ferromagnetism. Paramagnetism and diamagnetism compete with e