ﻻ يوجد ملخص باللغة العربية
We describe non-conventional localization of the midband E=0 state in square and cubic finite bipartite lattices with off-diagonal disorder by solving numerically the linear equations for the corresponding amplitudes. This state is shown to display multifractal fluctuations, having many sparse peaks, and by scaling the participation ratio we obtain its disorder-dependent fractal dimension $D_{2}$. A logarithmic average correlation function grows as $g(r) sim eta ln r$ at distance $r$ from the maximum amplitude and is consistent with a typical overall power-law decay $|psi(r)| sim r^{-eta}$ where $eta $ is proportional to the strength of off-diagonal disorder.
We report the development and application of a new method for carrying out computational investigations of the effects of mass and force-constant (FC) disorder on phonon spectra. The method is based on the recently developed typical medium dynamical
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, $1/r^a$. For randomly spaced particles, these models present an effective peculiar disorder that leads to s
We generalize the typical medium dynamical cluster approximation (TMDCA) and the local Blackman, Esterling, and Berk (BEB) method for systems with off-diagonal disorder. Using our extended formalism we perform a systematic study of the effects of non
We analyze the effects of disorder on the correlation functions of one-dimensional quantum models of fermions and spins with long-range interactions that decay with distance $ell$ as a power-law $1/ell^alpha$. Using a combination of analytical and nu
We study quantum transport in anisotropic 3D disorder and show that non rotation invariant correlations can induce rich diffusion and localization properties. For instance, structured finite-range correlations can lead to the inversion of the transpo