ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency Scaling of Microwave Conductivity in the Integer Quantum Hall Effect Minima

170   0   0.0 ( 0 )
 نشر من قبل Rupert M. Lewis
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the longitudinal conductivity $sigma_{xx}$ at frequencies $1.246 {rm GHz} le f le 10.05$ GHz over a range of temperatures $235 {rm mK} le T le 4.2$ K with particular emphasis on the Quantum Hall plateaus. We find that $Re(sigma_{xx})$ scales linearly with frequency for a range of magnetic field around the center of the plateaus, i.e. where $sigma_{xx}(omega) gg sigma_{xx}^{DC}$. The width of this scaling region decreases with higher temperature and vanishes by 1.2 K altogether. Comparison between localization length determined from $sigma_{xx}(omega)$ and DC measurements on the same wafer show good agreement.



قيم البحث

اقرأ أيضاً

129 - Ludwig Schweitzer 2003
The status of the ac quantum Hall effect is reviewed with emphasis on the theoretical development in recent years. In particular, the numerical approaches for the calculation of the frequency dependent Hall and longitudinal conductivities of non-inte racting electrons are considered in detail. Results for the frequency scaling at the critical point and for the frequency dependent deviation of the Hall conductivity from the quantised plateau value are presented.
The high-frequency conductivity of Si delta-doped GaAs/AlGaAs heterostructures is studied in the integer quantum Hall effect (QHE) regime, using acoustic methods. Both the real and the imaginary parts of the complex conductivity are determined from t he experimentally observed magnetic field and temperature dependences of the velocity and the attenuation of a surface acoustic wave. It is demonstrated that in the structures studied the mechanism of low-temperature conductance near the QHE plateau centers is hopping. It is also shown that at magnetic fields corresponding to filling factors 2 and 4, the doped Si delta- layer efficiently shunts the conductance in the two-dimensional electron gas (2DEG) channel. A method to separate the two contributions to the real part of the conductivity is developed, and the localization length in the 2DEG channel is estimated.
162 - N. Goldman , P. Gaspard 2007
We study the spectral properties of infinite rectangular quantum graphs in the presence of a magnetic field. We study how these properties are affected when three-dimensionality is considered, in particular, the chaological properties. We then establ ish the quantization of the Hall transverse conductivity for these systems. This quantization is obtained by relating the transverse conductivity to topological invariants. The different integer values of the Hall conductivity are explicitly computed for an anisotropic diffusion system which leads to fractal phase diagrams.
200 - R. A. Romer , C. Sohrmann 2008
We report on numerical studies into the interplay of disorder and electron-electron interactions within the integer quantum Hall regime, where the presence of a strong magnetic field and two-dimensional confinement of the electronic system profoundly affects thermodynamic and transport properties. We emphasise the behaviour of the electronic compressibility, the local density of states, and the Kubo conductivity. Our treatment of the electron-electron interactions relies on the Hartree-Fock approximation so as to achieve system sizes comparable to experimental situations. Our results clearly exhibit manifestations of various interaction-mediated features, such as non-linear screening, local charging, and g-factor enhancement, implying the inadequacy of independent-particle models for comparison with experimental results.
In recent interference experiments with an electronic Fabry-Perot interferometer (FPI), implemented in the integer quantum Hall effect regime, a flux periodicity of $h/2e$ was observed at bulk fillings $ u_B>2.5$. The halved periodicity was accompani ed by an interfering charge $e^*=2e$, determined by shot noise measurements. Here, we present measurements, demonstrating that, counterintuitively, the coherence and the interference periodicity of the interfering chiral edge channel are solely determined by the coherence and the enclosed flux of the adjacent edge channel. Our results elucidate the important role of the latter and suggest that a neutral chiral edge mode plays a crucial role in the pairing phenomenon. Our findings reveal that the observed pairing of electrons is not a curious isolated phenomenon, but one of many manifestations of unexpected edge physics in the quantum Hall effect regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا