ﻻ يوجد ملخص باللغة العربية
We describe arrangements of ions capable of producing short-range attractive interactions between pairs of charged colloidal spheres in the low temperature strongly correlated limit. For particles of radius $R$ with bare charge $Z$ and comparable absorbed charge $-N$ ($N sim Z$), the correlations contribution to the spheres self-energy scales as $N^{3/2}/R$, and as $N/R$ for the interaction energy between two touching spheres. We show that the re-arrangement of charges due to polarization plays an insignificant role in the nature and magnitude of the interaction.
The effective force between two parallel DNA molecules is calculated as a function of their mutual separation for different valencies of counter- and salt ions and different salt concentrations. Computer simulations of the primitive model are used an
Strongly correlated systems of fermions have a number of exciting collective properties. Among them, the creation of a lattice that is occupied by doublons, i.e. two quantum particles with opposite spins, offers interesting electronic properties. In
Using molecular dynamics simulations we examine the effective interactions between two like-charged rods as a function of angle and separation. In particular, we determine how the competing electrostatic repulsions and multivalent-ion-induced attract
We study the spin excitation spectra and the dynamical exchange coupling between iron adatoms on a Bi bilayer nanoribbon. We show that the topological character of the edge states is preserved in the presence of the magnetic adatoms. Nevertheless, th
A combined nonequilibrium Green functions-Ehrenfest dynamics approach is developed that allows for a time-dependent study of the energy loss of a charged particle penetrating a strongly correlated system at zero and finite temperature. Numerical resu