ترغب بنشر مسار تعليمي؟ اضغط هنا

Twist Mode in Spherical Alkali Metal Clusters

88   0   0.0 ( 0 )
 نشر من قبل V. O. Nesterenko
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A remarkable orbital quadrupole magnetic resonance, so-called twist mode, is predicted in alkali metal clusters where it is represented by $I^{pi}=2^-$ low-energy excitations of valence electrons with strong M2 transitions to the ground state. We treat the twist by both macroscopic and microscopic ways. In the latter case, the shell structure of clusters is fully exploited, which is crucial for the considered size region ($8le N_ele 1314$). The energy-weighted sum rule is derived for the pseudo-Hamiltonian. In medium and heavy spherical clusters the twist dominates over its spin-dipole counterpart and becomes the most strong multipole magnetic mode.



قيم البحث

اقرأ أيضاً

We supplement our previous observations of the shell effect in alkali-metal nanowires (Li, Na, K) with data extended to the heavy alkalis Rb and Cs. Our observations include: i) a non-monotonous dependence of conductance-histogram peak heights on ato mic weight, ii) a rapid transition to an atomic shell structure at elevated temperatures, and iii) a reverse atomic-electronic shell transition, caused by the closeness to the liquid state.
The emergence of flat electronic bands and of the recently discovered strongly correlated and superconducting phases in twisted bilayer graphene crucially depends on the interlayer twist angle upon approaching the magic angle $theta_M approx 1.1deg$. Although advanced fabrication methods allow alignment of graphene layers with global twist angle control of about 0.1$deg$, little information is currently available on the distribution of the local twist angles in actual magic angle twisted bilayer graphene (MATBG) transport devices. Here we map the local $theta$ variations in hBN encapsulated devices with relative precision better than 0.002$deg$ and spatial resolution of a few moir$e$ periods. Utilizing a scanning nanoSQUID-on-tip, we attain tomographic imaging of the Landau levels in the quantum Hall state in MATBG, which provides a highly sensitive probe of the charge disorder and of the local band structure determined by the local $theta$. We find that even state-of-the-art devices, exhibiting high-quality global MATBG features including superconductivity, display significant variations in the local $theta$ with a span close to 0.1$deg$. Devices may even have substantial areas where no local MATBG behavior is detected, yet still display global MATBG characteristics in transport, highlighting the importance of percolation physics. The derived $theta$ maps reveal substantial gradients and a network of jumps. We show that the twist angle gradients generate large unscreened electric fields that drastically change the quantum Hall state by forming edge states in the bulk of the sample, and may also significantly affect the phase diagram of correlated and superconducting states. The findings call for exploration of band structure engineering utilizing twist-angle gradients and gate-tunable built-in planar electric fields for novel correlated phenomena and applications.
An antiphased magnetoplasma (MP) mode in a two-dimensional electron gas (2DEG) has been studied by means of inelastic light scattering (ILS) spectroscopy. Unlike the cophased MP mode it is purely quantum excitation which has no classic plasma analogu e. It is found that zero momentum degeneracy for the antiphased and cophased modes predicted by the first-order perturbation approach in terms of the {it e-e} interaction is lifted. The zero momentum energy gap is determined by a negative correlation shift of the antiphased mode. This shift, observed experimentally and calculated theoretically within the second-order perturbation approach, is proportional to the effective Rydberg constant in a semiconductor material.
Carrier-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction plays an important role in itinerant magnetism. There have been intense interest on its general trend on bipartite lattice with particle-hole symmetry. In particular, recently fabricat ed graphene is well described by the honeycomb lattice within tight-binding approximation. We use SUSY quantum mechanics to study the RKKY interaction on bipartite lattices. The SUSY structure naturally differentiate the zero modes and those paired states at finite energies. The significant role of zero modes is largely ignored in previous literature because their measure is often zero in the thermodynamic limit. Employing both real-time and imaginary-time formalism, we arrive at the same conclusion: The RKKY interaction for impurity spins on different sublattices is always antiferromagnetic. However, for impurity spins on the same sublattice, the carrier-mediated RKKY interaction is not always ferromagnetic. Only in the absence of zero modes, the sign rule on the bipartite lattice holds true. Our finding highlight the importance of the zero modes in bipartite lattices. Their significance needs further investigation and may lead to important advances in carrier-mediated magnetism.
109 - G. Klupp 2005
We report the temperature dependent mid- and near-infrared spectra of K4C60, Rb4C60 and Cs4C60. The splitting of the vibrational and electronic transitions indicates a molecular symmetry change of C604- which brings the fulleride anion from D2h to ei ther a D3d or a D5d distortion. In contrast to Cs4C60, low temperature neutron diffraction measurements did not reveal a structural phase transition in either K4C60 and Rb4C60. This proves that the molecular transition is driven by the molecular Jahn-Teller effect, which overrides the distorting potential field of the surrounding cations at high temperature. In K4C60 and Rb4C60 we suggest a transition from a static to a dynamic Jahn-Teller state without changing the average structure. We studied the librations of these two fullerides by temperature dependent inelastic neutron scattering and conclude that both pseudorotation and jump reorientation are present in the dynamic Jahn-Teller state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا