ﻻ يوجد ملخص باللغة العربية
Recently, Arcon et al. reported ESR studies of the polymer phase (PP) of Na_{2}Rb_{0.3}Cs_{0.7}C_{60} fulleride. It was claimed that this phase is a quasi-one-dimensional metal above 45 K with a spin-gap below this temperature and has antiferromagnetic(AF) order below 15 K, that is evidenced by antiferromagnetic resonance(AFMR). For the understanding of the rich physics of fullerides it is important to identify the different ground states. ESR has proven to be a useful technique for this purpose. However, since it is a very sensitive probe, it can detect a multitude of spin species and it is not straightforward to identify their origin, especially in a system like Na_{2}Rb_{x}Cs_{1-x}C_{60} with three dopants, when one part of the sample polymerizes but the majority does not. The observation of a low dimensional instability in the single bonded PP would be a novel and important result. Nevertheless, in this Comment we argue that Na_{2}Rb_{0.3}Cs_{0.7}C_{60} is not a good choice for this purpose since, as we show, the samples used by Arcon et al. are inhomogeneous. We point out that recent results on the PP of Na_{2}CsC_{60} contradicts the observation of low dimensional instabilities in Na_{2}Rb_{0.3}Cs_{0.7}C_{60}.
In this Comment we report a phenomenon identical to that observed in ({Y. Sun, M. B. Salamon, K. Garnier and R. S. Averback, Phys. Rev. Lett. 91, 167206 (2003)}) for systems of NiFe{$_2$}O{$_4$} particles (mean size $approx$ 3nm) embedded in a SiO{$_
In a recent letter [D. Poletti et al., EPL 93, 37008 (2011)] a model of attractive spinless fermions on the honeycomb lattice at half filling has been studied by mean-field theory, where distinct homogenous phases at rather large attraction strength
In a comment on arXiv:1006.5070v1, Drechsler et al. present new band-structure calculations suggesting that the frustrated ferromagnetic spin-1/2 chain LiCuVO4 should be described by a strong rather than weak ferromagnetic nearest-neighbor interactio
In a comment on arXiv:1006.5070v2, Drechsler et al. claim that the frustrated ferromagnetic spin-1/2 chain LiCuVO4 should be described by a strong rather than weak ferromagnetic nearest-neighbor interaction, in contradiction with their previous work.
Previously, we reported that the doping and pressure dependence of the $T^ast(B)$ crossover in YbRh$_2$Si$_2$ is incompatible with its interpretation as signature of a Kondo breakdown [M.-H. Schubert et al., Phys. Rev. Research 1, 032004(R) (2019)].