ترغب بنشر مسار تعليمي؟ اضغط هنا

First principles elastic constants and electronic structure of alpha-Pt_2Si and PtSi

127   0   0.0 ( 0 )
 نشر من قبل Oliver Beckstein
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out a first principles study of the elastic properties and electronic structure for two room-temperature stable Pt silicide phases, tetragonal alpha-Pt_2Si and orthorhombic PtSi. We have calculated all of the equilibrium structural parameters for both phases: the a and c lattice constants for alpha-Pt_2Si and the a, b, and c lattice constants and four internal structural parameters for PtSi. These results agree closely with experimental data. We have also calculated the zero-pressure elastic constants, confirming prior results for pure Pt and Si and predicting values for the six (nine) independent, non-zero elastic constants of alpha-Pt_2Si (PtSi). These calculations include a full treatment of all relevant internal displacements induced by the elastic strains, including an explicit determination of the dimensionless internal displacement parameters for the three strains in alpha-Pt_2Si for which they are non-zero. We have analyzed the trends in the calculated elastic constants, both within a given material as well as between the two silicides and the pure Pt and Si phases. The calculated electronic structure confirms that the two silicides are poor metals with a low density of states at the Fermi level, and consequently we expect that the Drude component of the optical absorption will be much smaller than in good metals such as pure Pt. This observation, combined with the topology found in the first principles spin-orbit split band structure, suggests that it may be important to include the interband contribution to the optical absorption, even in the infrared region.



قيم البحث

اقرأ أيضاً

We have carried out a detailed study of the chemical bonding for two room-temperature stable platinum silicide phases, tetragonal alpha-Pt_2Si and orthorhombic PtSi. An analysis of the valence electronic charge density reveals surprising evidence of covalent three-center bonds in both silicide phases, as well as two-dimensional metallic sheets in alpha-Pt_2Si. These elements of the bonding are further analyzed by constructing valence force field models using the results from recent first principles calculations of the six (nine) independent, non-zero elastic constants of alpha-Pt_2Si (PtSi). The resulting volume-, radial-, and angular-dependent force constants provide insight into the relative strength of various bonding elements as well as the trends observed in the elastic constants themselves. The valence force field analysis yields quantitative information about the nature of the chemical bonding which is not easily discernable from the more qualitative charge density plots. More generally, this study demonstrates that the detailed variations in the elastic constants of a material contain useful information about the chemical bonds which can be extracted using valence force field models. Inversely, these models also allow identification of specific elements of the chemical bonding with particular trends in the elastic constants, both within a given material and among a class of related materials.
The full-potential linearized augmented plane wave method with the generalized gradient approximation for the exchange-correlation potential (FLAPW-GGA) is used to predict the electronic and elastic properties of the newly discovered superconducting nanolaminate Ti2InC. The band structure, density of states and Fermi surface features are discussed. The optimized lattice parameters, independent elastic constants, bulk and shear moduli, compressibility are evaluated and discussed. The elastic parameters of the polycrystalline Ti2InC ceramics are estimated numerically for the first time.
Using first-principles calculations within the generalized gradient approximation, we predicted the lattice parameters, elastic constants, vibrational properties, and electronic structure of cementite (Fe3C). Its nine single-crystal elastic constants were obtained by computing total energies or stresses as a function of applied strain. Furthermore, six of them were determined from the initial slopes of the calculated longitudinal and transverse acoustic phonon branches along the [100], [010] and [001] directions. The three methods agree well with each other, the calculated polycrystalline elastic moduli are also in good overall agreement with experiments. Our calculations indicate that Fe3C is mechanically stable. The experimentally observed high elastic anisotropy of Fe3C is also confirmed by our study. Based on electronic density of states and charge density distribution, the chemical bonding in Fe3C was analyzed and was found to exhibit a complex mixture of metallic, covalent, and ionic characters.
Continuing the photoemission study begun with the work of Opeil et al. [Phys. Rev. B textbf{73}, 165109 (2006)], in this paper we report results of an angle-resolved photoemission spectroscopy (ARPES) study performed on a high-quality single-crystal $alpha$-uranium at 173 K. The absence of surface-reconstruction effects is verified using X-ray Laue and low-energy electron diffraction (LEED) patterns. We compare the ARPES intensity map with first-principles band structure calculations using a generalized gradient approximation (GGA) and we find good correlations with the calculated dispersion of the electronic bands.
The electronic band structure and elastic properties of the Cd${}_{16}$Se${}_{15}$Te solid state solution in the framework of the density functional theory calculations are investigated. The structure of the sample is constructed on the original bina ry compound CdSe, which crystallizes in the cubic phase. Based on the electronic band structure, the effective mass of electron, heavy hole, light hole, spin-orbit effective masses and reduced mass in G point are calculated. In addition, the exciton binding energy, refractive index and high-frequency dielectric constant are calculated. The Young modulus, shear modulus, bulk modulus and Poisson ratio are calculated theoretically. Based on the results of elastic coefficients, the value of acoustic velocity and Debye temperature is obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا