ترغب بنشر مسار تعليمي؟ اضغط هنا

On the possibility of a metallic phase in granular superconducting films

123   0   0.0 ( 0 )
 نشر من قبل Derek K. K. Lee
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the possibility of finding a zero-temperature metallic phase in granular superconducting films. We are able to identify the breakdown of the conventional treatment of these systems as dissipative Bose systems. We do not find a metallic state at zero temperature. At finite temperatures, we find that the system exhibit crossover behaviour which may have implications for the analysis of experimental results. We also investigate the effect of vortex dissipation in these systems.



قيم البحث

اقرأ أيضاً

Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually localize into an insulating ground state, and it has long been supposed that e lectron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit, the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field-tuned transition from a true superconductor to a metallic phase with saturated resistivity. This metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state.
We present resistance versus temperature data for a series of boron-doped nanocrystalline diamond films whose grain size is varied by changing the film thickness. Upon extracting the fluctuation conductivity near to the critical temperature we observ e three distinct scaling regions -- 3D intragrain, quasi-0D, and 3D intergrain -- in confirmation of the prediction of Lerner, Varlamov and Vinokur. The location of the dimensional crossovers between these scaling regions allows us to determine the tunnelling energy and the Thouless energy for each film. This is a demonstration of the use of emph{fluctuation spectroscopy} to determine the properties of a superconducting granular system.
180 - V. V. Kabanov 2003
We solve the Ginzburg-Landau equation (GLE) for the mesoscopic superconducting thin film of the square shape in the magnetic field for the wide range of the Ginzburg-Landau parameter $0.05<kappa_{eff}<infty $. We found that the phase with the antivor tex exists in the broad range of parameters. When the coherence length decreases the topological phase transition to the phase with the same total vorticity and a reduced symmetry takes place. The giant vortex with the vorticity $m=3$ is found to be unstable for any field, $xi /a$ and $kappa_{eff}ge 0.1$. Reduction of $ kappa _{eff}$ does not make the phase with antivortex more stable contrary to the case of the cylindric sample of the type I superconductor.
Boron-doped diamond granular thin films are known to exhibit superconductivity with an optimal critical temperature of Tc = 7.2K. Here we report the measured complex surface impedance of Boron-doped diamond films in the microwave frequency range usin g a resonant technique. Experimentally measured inductance values are in good agreement with estimates obtained from the normal state sheet resistance of the material. The magnetic penetration depth temperature dependence is consistent with that of a fully-gapped s-wave superconductor. Boron-doped diamond films should find application where high kinetic inductance is needed, such as microwave kinetic inductance detectors and quantum impedance devices.
The phase transition between the intermediate and normal states in type-I superconducting films is investigated using magneto-optical imaging. Magnetic hysteresis with different transition fields for collapse and nucleation of superconducting domains is found. This is accompanied by topological hysteresis characterized by the collapse of circular domains and the appearance of lamellar domains. Magnetic hysteresis is shown to arise from supercooled and superheated states. Domain-shape instability resulting from long-range magnetic interaction accounts well for topological hysteresis. Connection with similar effects in systems with long-range magnetic interactions is emphasized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا