ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-Particle Effects in Semiconductor Quantum Dots: Observation of Multi-Charged-Excitons

60   0   0.0 ( 0 )
 نشر من قبل Ulrich Hohenester
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate experimentally and theoretically few-particle effects in the optical spectra of single quantum dots (QDs). Photo-depletion of the QD together with the slow hopping transport of impurity-bound electrons back to the QD are employed to efficiently control the number of electrons present in the QD. By investigating structurally identical QDs, we show that the spectral evolutions observed can be attributed to intrinsic, multi-particle-related effects, as opposed to extrinsic QD-impurity environment-related interactions. From our theoretical calculations we identify the distinct transitions related to excitons and excitons charged with up to five additional electrons, as well as neutral and charged biexcitons.



قيم البحث

اقرأ أيضاً

As an alternative to commonly used electrical methods, we have investigated the optical pumping of charged exciton complexes addressing impurity related transitions with photons of the appropriate energy. Under these conditions, we demonstrate that t he pumping fidelity can be very high while still maintaining a switching behavior between the different excitonic species. This mechanism has been investigated for single quantum dots of different size present in the same sample and compared with the direct injection of spectator electrons from nearby donors.
We measured, for the first time, two photon radiative cascades due to sequential recombination of quantum dot confined electron hole pairs in the presence of an additional spectator charge carrier. We identified direct, all optical cascades involving spin blockaded intermediate states, and indirect cascades, in which non radiative relaxation precedes the second recombination. Our measurements provide also spin dephasing rates of confined carriers.
Monolayer group VI transition metal dichalcogenides have recently emerged as semiconducting alternatives to graphene in which the true two-dimensionality (2D) is expected to illuminate new semiconducting physics. Here we investigate excitons and trio ns (their singly charged counterparts) which have thus far been challenging to generate and control in the ultimate 2D limit. Utilizing high quality monolayer molybdenum diselenide (MoSe2), we report the unambiguous observation and electrostatic tunability of charging effects in positively charged (X+), neutral (Xo), and negatively charged (X-) excitons in field effect transistors via photoluminescence. The trion charging energy is large (30 meV), enhanced by strong confinement and heavy effective masses, while the linewidth is narrow (5 meV) at temperatures below 55 K. This is greater spectral contrast than in any known quasi-2D system. We also find the charging energies for X+ and X- to be nearly identical implying the same effective mass for electrons and holes.
We study the effect of elastic anisotropic biaxial strain on the light emitted by neutral excitons confined in different kinds of semiconductor quantum dots (QDs). We find that the light polarization rotates by up to 80 degree and the excitonic fine structure splitting varies by several tens of $mu$eVs as the strain is varied. By means of a continuum model we mainly ascribe the observed effects to substantial changes of the hole wave function. These results show that strain-fields of a few permill magnitude are suffcient to dramatically modify the electronic structure of QDs.
Single-dot spectroscopy is now able to resolve the energies of excitons, multi-excitons, and charging of semiconductor quantum dots with ~<1 meV resolution. We discuss the physical content of these energies and show how they can be calculated via Qua ntum Monte Carlo (QMC) and Configuration Interaction (CI) methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا