Critical behavior of the S=1/2 Heisenberg ferromagnet: A Handscomb quantum Monte Carlo study


الملخص بالإنكليزية

We investigate the critical relaxational dynamics of the S=1/2 Heisenberg ferromagnet on a simple cubic lattice within the Handscomb prescription on which it is a diagrammatic series expansion of the partition function that is computed by means of a Monte Carlo procedure. Using a phenomenological renormalization group analysis of graph quantities related to the spin susceptibility and order parameter, we obtain precise estimates for the critical exponents relations $gamma / u = 1.98pm 0.01 $ and $beta / u = 0.512 pm 0.002$ and for the Curie temperature $k_BT_c/J = 1.6778 pm 0.0002$. The critical correlation time of both energy and susceptibility is also computed. We found that the number of Monte Carlo steps needed to generate uncorrelated diagram configurations scales with the systems volume. We estimate the efficiency of the Handscomb method comparing its ability in dealing with the critical slowing down with that of other quantum and classical Monte Carlo prescriptions.

تحميل البحث