ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium Campbell length: probing the vortex pinning potential

115   0   0.0 ( 0 )
 نشر من قبل Ruslan Prozorov
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $AC$ magnetic penetration depth $lambda (T,H,j)$ was measured in presence of a macroscopic $DC$ (Bean) supercurrent, $j$. In single crystal BSCCO below approximately 28 K, $lambda (T,H,j)$ exhibits thermal hysteresis. The irreversibility arises from a shift of the vortex position within its pinning well as $j$ changes. It is demonstrated that below a new irreversibility temperature, the nonequilibrium Campbell length depends upon the ratio $j/j_c$. $lambda (T,H,j)$ {it increases} with $j/j_c$ as expected for a non-parabolic potential well whose curvature {it decreases} with the displacement. Qualitatively similar results are observed in other high-$T_{c}$ and conventional superconductors.



قيم البحث

اقرأ أيضاً

Type-II superconductors owe their magnetic and transport properties to vortex pinning, the immobilization of flux quanta through material inhomogeneities or defects. Characterizing the potential energy landscape for vortices, the pinning landscape (o r short, pinscape), is of great technological importance. Besides measurement of the critical current density $j_c$ and of creep rates $S$, the $ac$ magnetic response provides valuable information on the pinscape which is different from that obtained through $j_c$ or $S$, with the Campbell penetration depth $lambda_{rm scriptscriptstyle C}$ defining a characteristic quantity well accessible in an experiment. Here, we derive a microscopic expression for the Campbell penetration depth $lambda_{rm scriptscriptstyle C}$ using strong pinning theory. Our results explain the dependence of $lambda_{rm scriptscriptstyle C}$ on the state preparation of the vortex system and the appearance of hysteretic response. Analyzing different pinning models, metallic or insulating inclusions as well as $delta T_c$- and $delta ell$-pinning, we discuss the behavior of the Campbell length for different vortex state preparations within the phenomenological $H$-$T$ phase diagram and compare our results with recent experiments.
We study theoretically the simultaneous effect of a regular and a random pinning potentials on the vortex lattice structure at filling factor of 1. This structure is determined by a competition between the square symmetry of regular pinning array, by the intervortex interaction favoring a triangular symmetry, and by the randomness trying to depin vortices from their regular positions. Both analytical and molecular-dynamics approaches are used. We construct a phase diagram of the system in the plane of regular and random pinning strengths and determine typical vortex lattice defects appearing in the system due to the disorder. We find that the total disordering of the vortex lattice can occur either in one step or in two steps. For instance, in the limit of weak pinning, a square lattice of pinned vortices is destroyed in two steps. First, elastic chains of depinned vortices appear in the film; but the vortex lattice as a whole remains still pinned by the underlying square array of regular pinning sites. These chains are composed into fractal-like structures. In a second step, domains of totally depinned vortices are generated and the vortex lattice depins from regular array.
The elementary vortex pinning potential is studied in a chiral p-wave superconductor with a pairing d=z(k_x + i k_y) on the basis of the quasiclassical theory of superconductivity. An analytical investigation and numerical results are presented to sh ow that the vortex pinning potential is dependent on whether the vorticity and chirality are parallel or antiparallel. Mutual cancellation of the vorticity and chirality around a vortex is physically crucial to the effect of the pinning center inside the vortex core.
140 - T.W. Heitmann 2008
We have developed a picovoltmeter using a Nb dc Superconducting QUantum Interference Device (SQUID) for measuring the flux-flow voltage from a small number of vortices moving through a submicron weak-pinning superconducting channel. We have applied t his picovoltmeter to measure the vortex response in a single channel arranged in a circle on a Corbino disk geometry. The circular channel allows the vortices to follow closed orbits without encountering any sample edges, thus eliminating the influence of entry barriers.
In order to compare magnetic and non-magnetic pinning we have nanostructured two superconducting films with regular arrays of pinning centers: Cu (non-magnetic) dots in one case, and Py (magnetic) dots in the other. For low applied magnetic fields, w hen all the vortices are pinned in the artificial inclusions, magnetic dots prove to be better pinning centers, as has been generally accepted. Unexpectedly, when the magnetic field is increased and interstitial vortices appear, the results are very different: we show how the stray field generated by the magnetic dots can produce an effective reduction of the penetration length. This results in strong consequences in the transport properties, which, depending on the dot separation, can lead to an enhancement or worsening of the transport characteristics. Therefore, the election of the magnetic or non-magnetic character of the pinning sites for an effective reduction of dissipation will depend on the range of the applied magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا