ﻻ يوجد ملخص باللغة العربية
Six-loop massive scheme renormalization group functions of a d=3-dimensional cubic model (J.M. Carmona, A. Pelissetto, and E. Vicari, Phys. Rev. B vol. 61, 15136 (2000)) are reconsidered by means of the pseudo-epsilon expansion. The marginal order parameter components number N_c=2.862(5) as well as critical exponents of the cubic model are obtained. Our estimate N_c<3 leads in particular to the conclusion that all ferromagnetic cubic crystals with three easy axis should undergo a first order phase transition.
We handle divergent {epsilon} expansions in different universality classes derived from modified Landau-Wilson Hamiltonian. Landau-Wilson Hamiltonian can cater for describing critical phenomena on a wide range of physical systems which differ in symm
The two-dimensional ferromagnetic anisotropic Ashkin-Teller model is investigated through a real-space renormalization-group approach. The critical frontier, separating five distinct phases, recover all the known exacts results for the square lattice
We investigate the critical behavior that d-dimensional systems with short-range forces and a n-component order parameter exhibit at Lifshitz points whose wave-vector instability occurs in a m-dimensional isotropic subspace of ${mathbb R}^d$. Utilizi
Using Environmentally Friendly Renormalization, we present an analytic calculation of the series for the renormalization constants that describe the equation of state for the $O(N)$ model in the whole critical region. The solution of the beta-functio
We present a functional renormalization group (fRG) study of the two dimensional Hubbard model, performed with an algorithmic implementation which lifts some of the common approximations made in fRG calculations. In particular, in our fRG flow; (i) w