ﻻ يوجد ملخص باللغة العربية
Experimental bulk susceptibility X(T) and magnetization M(H,T) of the S=1-Haldane chain system doped with nonmagnetic impurities, Y2BaNi1-xZnxO5 (x=0.04,0.06,0.08), are analyzed. A numerical calculation for the low-energy spectrum of non-interacting open segments describes very well experimental data above 4 K. Below 4 K, we observe power-law behaviors, X(T)=T^-alpha and M(H,T)/T^(1-alpha)=f(alpha,(H/T)), with alpha (<1) depending on the doping concentration x.This observation suggests the appearance of a gapless quantum phase due to a broad distribution of effective couplings between the dilution-induced moments.
The heavy fermion system CeNi9Ge4 exhibits a paramagnetic ground state with remarkable features such as: a record value of the electronic specific heat coefficient in systems with a paramagnetic ground state, gamma = C/T simeq 5.5 J/molK^2 at 80 mK,
The intermediate-valent polymorphs $alpha$- and $beta$-YbAlB$_4$ exhibit quantum criticality and other novel properties not usually associated with intermediate valence. Iron doping induces quantum criticality in $alpha$-YbAlB$_4$ and magnetic order
$alpha$-RuCl$_3$ has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaevs honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at
The Haldane system PbNi2V2O8 was investigated by the temperature dependent magnetization M(T) measurements at fields higher than H_c, with H_c the critical fields necessary to close the Haldane gap. It is revealed that M(T) for H > H_c exhibits a cus
We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y$_2$BaNi$_{1-x}$Zn$_x$O$_5$. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unco