ترغب بنشر مسار تعليمي؟ اضغط هنا

Digital Communication Using Chaotic Pulse Generators

87   0   0.0 ( 0 )
 نشر من قبل Nikolai Rulkov
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Utilization of chaotic signals for covert communications remains a very promising practical application. Multiple studies indicated that the major shortcoming of recently proposed chaos-based communication schemes is their susceptibility to noise and distortions in communication channels. In this talk we discuss a new approach to communication with chaotic signals, which demonstrates good performance in the presence of channel distortions. This communication scheme is based upon chaotic signals in the form of pulse trains where intervals between the pulses are determined by chaotic dynamics of a pulse generator. The pulse train with chaotic interpulse intervals is used as a carrier. Binary information is modulated onto this carrier by the pulse position modulation method, such that each pulse is either left unchanged or delayed by a certain time, depending on whether ``0 or ``1 is transmitted. By synchronizing the receiver to the chaotic pulse train we can anticipate the timing of pulses corresponding to ``0 and ``1 and thus can decode the transmitted information. Based on the results of theoretical and experimental studies we shall discuss the basic design principles for the chaotic pulse generator, its synchronization, and the performance of the chaotic pulse communication scheme in the presence of channel noise and filtering.



قيم البحث

اقرأ أيضاً

Some new properties of the chaotic signal have been implemented in communication system applications recently. However, due to the broadband property of the chaotic signal, it is very difficult for a practical transducer or antenna to convert such a broadband signal into a signal that would be suitable for practical band-limited wireless channel. Thus, the use of chaos property to improve the performance of conventional communication system without changing the system configuration becomes a critical issue in communication with chaos. In this paper, chaotic baseband waveform generated by a chaotic shaping filter is used to show that this difficulty can be overcome. The generated continuous-time chaotic waveform is proven to be topologically conjugate to a symbolic sequence, allowing the encoding of arbitrary information sequence into the chaotic waveform. A finite impulse response filter is used to replace the impulse control in order to encode information into the chaotic signal, simplifying the algorithm for high speed communication. A wireless communication system is being proposed using the chaotic signal as the baseband waveform, which is compatible with the general wireless communication platform. The matched filter and decoding method, using chaos properties, enhance the communication system performance. The Bit Error Rate (BER) and computational complexity performances of the proposed wireless communication system are analyzed and compared with the conventional wireless systems. The results show that the proposed chaotic baseband waveform of our wireless communication method has better BER performance in both the static and time-varying wireless channels. The experimental results, based on the commonly-used wireless open-access research platform, show that the BER of the proposed method is superior to the conventional method under a practical wireless multipath channel.
Time-delay signature (TDS) suppression of semiconductor lasers with external optical feedback is necessary to ensure the security of chaos-based secure communications. Here we numerically and experimentally demonstrate a technique to effectively supp ress the TDS of chaotic lasers using quantum noise. The TDS and dynamical complexity are quantified using the autocorrelation function and normalized permutation entropy at the feedback delay time, respectively. Quantum noise from quadrature fluctuations of vacuum state is prepared through balanced homodyne measurement. The effects of strength and bandwidth of quantum noise on chaotic TDS suppression and complexity enhancement are investigated numerically and experimentally. Compared to the original dynamics, the TDS of this quantum-noise improved chaos is suppressed up to 94% and the bandwidth suppression ratio of quantum noise to chaotic laser is 1:25. The experiment agrees well with the theory. The improved chaotic laser is potentially beneficial to chaos-based random number generation and secure communication.
Excitable media are prevalent models for describing physical, chemical, and biological systems which support wave propagation. In this letter, we show that the time evolution of the medium state at the wave fronts can be determined by complicated cha otic attractors. Wave front dynamics can be controlled by initial data choice. Building on this groundwork, we show that there is a mechano-chemical analog of the Universal Turing machine for morphogenesis problems. Namely, a fixed mechano-chemical system can produce any prescribed cell pattern depending on its input (initial data). This universal mechanism uses fundamental physical effects: spontaneous symmetry breaking with formation of many interfaces (kinks), which interact non-locally via a fast diffusing reagent. This interaction creates chaos. We present algorithms allowing us to obtain a prescribed target cell pattern.
176 - J. Pablo Salas , J Salas 2018
We consider the formation of RbCs by an elliptically polarized laser pulse. By varying the ellipticity of the laser for sufficiently large laser intensity, we see that the formation probability presents a strong dependence, especially around elliptic ity 1/ $sqrt$ 2. We show that the analysis can be reduced to the investigation of the long-range interaction between the two atoms. The formation is mainly due to a small momentum shifts induced by the laser pulse. We analyze these results using the Silbersteins expressions of the polarizabilities, and show that the ellipticity of the field acts as a control knob for the formation probability, allowing significant variations of the dimer formation probability at a fixed laser intensity, especially in the region around an ellipticity of 1/ $sqrt$ 2.
The growing potential of modern communications needs the use of secure means to protect information from unauthorized access and use during transmission. In general, encryption a message using cryptography techniques and then hidden a message with a steganography methods provides an additional layer of protection. Furthermore, using these combination reduces the chance of finding the hidden message. This paper proposed a system which combines schemes of cryptography with steganography for hiding secret messages and to add more complexity for steganography. The proposed system secret message encoded with chaotic stream cipher and afterwards the encoded data is hidden behind an RGB or Gray cover image by modifying the kth least significant bits (k-LSB) of cover image pixels. The resultant stego-image less distorters. After which can be used by the recipient to extract that bit-plane of the image. In fact, the schemes of encryption/decryption and embedding/ extracting in the proposed system depends upon two shred secret keys between the sender and the receiver. An experiment shows that using an unauthorized secret keys between the sender and the receiver have totally different messages from the original ones which improve the confidentiality of the images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا