ﻻ يوجد ملخص باللغة العربية
Energy spectra of a particle with mass $m$ and charge $e$ in the cubic Aharonov-Bohm billiard containing around $10^4$ consecutive levels starting from the ground state have been analysed. The cubic Aharonov-Bohm billiard is a plane billiard defined by the cubic conformal mapping of the unit disc pervaded by a point magnetic flux through the origin perpendicular to the plane of the billiard. The magnetic flux does not influence the classical dynamics, but breaks the antiunitary symmetry in the system, which affects the statistics of energy levels. By varying the shape parameter $lam$ the classical dynamics goes from integrable ($lam =0$) to fully chaotic ($lam = 0.2$; Africa billiard). The level spacing distribution $P(S)$ and the number variance $Sigma^{2}(L)$ have been studied for 13 different shape parameters on the interval ($0lelamle0.2$). GUE statistics has proven correct for completely chaotic case, while in the mixed regime the fractional power law level repulsion has been observed. The exponent of the level repulsion has been analysed and is found to change smoothly from 0 to 2 as the dynamics goes from integrable to ergodic. Further on, the semiclassical Berry-Robnik theory has been examined. We argue that the semiclassical regime has not been reached and give an estimate for the number of energy levels required for the Berry-Robnik statistics to apply.
We derive and analyze a three dimensional model of a figure skater. We model the skater as a three-dimensional body moving in space subject to a non-holonomic constraint enforcing movement along the skates direction and holonomic constraints of conti
Mean fidelity amplitude and parametric energy--energy correlations are calculated exactly for a regular system, which is subject to a chaotic random perturbation. It turns out that in this particular case under the average both quantities are identic
Recently it was suggested that certain perturbations of integrable spin chains lead to a weak breaking of integrability in the sense that integrability is preserved at the first order in the coupling. Here we examine this claim using level spacing di
We provide numerical evidence that the Onsager symmetry remains valid for systems subject to a spatially dependent magnetic field, in spite of the broken time-reversal symmetry. In addition, for the simplest case in which the field strength varies on
We present experimental and theoretical results for the fluctuation properties in the incomplete spectra of quantum systems with symplectic symmetry and a chaotic dynamics in the classical limit. To obtain theoretical predictions, we extend the rando