ﻻ يوجد ملخص باللغة العربية
We consider turbulent advection of a scalar field $T(B.r)$, passive or active, and focus on the statistics of gradient fields conditioned on scalar differences $Delta T(R)$ across a scale $R$. In particular we focus on two conditional averages $langle abla^2 Tbig|Delta T(R)rangle$ and $langle| abla T|^2big|Delta T(R) rangle$. We find exact relations between these averages, and with the help of the fusion rules we propose a general representation for these objects in terms of the probability density function $P(Delta T,R)$ of $Delta T(R)$. These results offer a new way to analyze experimental data that is presented in this paper. The main question that we ask is whether the conditional average $langle abla^2 Tbig| Delta T(R)rangle$ is linear in $Delta T$. We show that there exists a dimensionless parameter which governs the deviation from linearity. The data analysis indicates that this parameter is very small for passive scalar advection, and is generally a decreasing function of the Rayleigh number for the convection data.
We present a review of the latest developments in 1D OWT. Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear fiel
Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of the turbulent scalar flux spectrum in both the inverse
The nonlinear dynamics of waves at the sea surface is believed to be ruled by the Weak Turbulence framework. In order to investigate the nonlinear coupling among gravity surface waves, we developed an experiment in the Coriolis facility which is a 13
The current status of theoretical QCD calculations and experimental measurements of the Gottfried sum rule are discussed. The interesting from our point of view opened problems are summarised. Among them is the task of estimating the measure of light
We consider the statistical description of steady state fully developed incompressible fluid turbulence at the inertial range of scales in any number of spatial dimensions. We show that turbulence statistics is scale but not conformally covariant, wi