ترغب بنشر مسار تعليمي؟ اضغط هنا

Recursive Proportional Feedback and its Use to Control Chaos in an Electrochemical System

284   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1995
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recursive proportional feedback (RPF) algorithm for controlling chaos is described and applied to control chemical chaos observed during the electrodissolution of a rotating copper disk in a sodium acetate/acetic acid buffer. Experimental evidence is presented to indicate why the RPF method was used and the theoretical robustness of the algorithm is discussed. (This paper appears in the Proceedings of the 2nd Conference on EXPERIMENTAL CHAOS, World Scientific Press, River Ridge, NJ, 1995)



قيم البحث

اقرأ أيضاً

We study the capture of galactic dark matter particles in the Solar System produced by rotation of Jupiter. It is shown that the capture cross section is much larger than the area of Jupiter orbit being inversely diverging at small particle energy. W e show that the dynamics of captured particles is chaotic and is well described by a simple symplectic dark map. This dark map description allows to simulate the scattering and dynamics of $10^{14}$ dark matter particles during the life time of the Solar System and to determine dark matter density profile as a function of distance from the Sun. The mass of captured dark matter in the radius of Neptune orbit is estimated to be $2 cdot 10^{15} g$. The radial density of captured dark matter is found to be approximately constant behind Jupiter orbit being similar to the density profile found in galaxies.
48 - Peter Ashwin 1997
We examine a model system where attractors may consist of a heteroclinic cycle between chaotic sets; this `cycling chaos manifests itself as trajectories that spend increasingly long periods lingering near chaotic invariant sets interspersed with sho rt transitions between neighbourhoods of these sets. This behaviour can be robust (i.e., structurally stable) for systems with symmetries and provides robust examples of non-ergodic attractors in such systems; we examine bifurcations of this state. We discuss a scenario where an attracting cycling chaotic state is created at a blowout bifurcation of a chaotic attractor in an invariant subspace. This is a novel scenario for the blowout bifurcation and causes us to introduce the idea of set supercriticality to recognise such bifurcations. The robust cycling chaotic state can be followed to a point where it loses stability at a resonance bifurcation and creates a series of large period attractors. The model we consider is a 9th order truncated ODE model of three-dimensional incompressible convection in a plane layer of conducting fluid subjected to a vertical magnetic field and a vertical temperature gradient. Symmetries of the model lead to the existence of invariant subspaces for the dynamics; in particular there are invariant subspaces that correspond to regimes of two-dimensional flows. Stable two-dimensional chaotic flow can go unstable to three-dimensional flow via the cross-roll instability. We show how the bifurcations mentioned above can be located by examination of various transverse Liapunov exponents. We also consider a reduction of the ODE to a map and demonstrate that the same behaviour can be found in the corresponding map.
103 - Ingo Piepers 2006
The assumption that complex systems function optimally at the edge of chaos seems applicable to the international system as well. In this paper I argue that the normal chaotic war dynamic of the European international system (1495-1945) was temporari ly (1657-1763) interrupted by a more simplified dynamic, resulting in more intense Great Power wars and in a delay of the reorganization of the international system in the 18th century.
Mean fidelity amplitude and parametric energy--energy correlations are calculated exactly for a regular system, which is subject to a chaotic random perturbation. It turns out that in this particular case under the average both quantities are identic al. The result is compared with the susceptibility of chaotic systems against random perturbations. Regular systems are more susceptible against random perturbations than chaotic ones.
Recent years have seen an increasing interest in quantum chaos and related aspects of spatially extended systems, such as spin chains. However, the results are strongly system dependent, generic approaches suggest the presence of many-body localizati on while analytical calculations for certain system classes, here referred to as the ``self-dual case, prove adherence to universal (chaotic) spectral behavior. We address these issues studying the level statistics in the vicinity of the latter case, thereby revealing transitions to many-body localization as well as the appearance of several non-standard random-matrix universality classes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا